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Abstract of the Project

The studies of Wiener’s attack on RSA with small decryption exponents initi-
ated the study of continued fraction based attacks on RSA and led to the study of
refinement of attack bounds on the decryption exponent, by B de Weger, Subhamoy
Maitra and Santanu Sarkar. Further R.G.E. Pinch proved that Wiener’s attack on
RSA cryptosystem with small decryption exponent may be extended to RSA-like
cryptosystems on elliptic curves and Lucas sequences. Coppersmith methods of find-
ing small roots of univariate modular equations initiated the study of lattice based
attacks on RSA with low decryption exponent and led to the study of refinement of
these attack bounds by Boneh-Durfee, Blömer-May, B de Weger and Maitra-Sarkar.
In this project we proposed an attack using lattice reduction techniques on RSA
when p− 1 or q− 1 have small multiplicative inverse less than or equal to N δ mod-
ulo the public encryption exponent e and further refined the attack bounds for δ.
We also proposed an attack using lattice reduction techniques on RSA when ϕ(N)
has small multiplicative inverse k modulo the public encryption exponent e and for
k ≤ N δ, the attack bounds for δ are described. Later proved that if the prime sum
p+ q is of the form p+ q = 2nk0 + k1 where n is a given positive integer and k0 and
k1 are two suitably small unknown integers then the maximum bound for δ can be
refined. Employing the previous tools, we provide an attack bound for the decipher-
ing exponent d when the prime sum p+q = 2nk0 +k1 for appropriately small k0 and
k1. We proved that all the continued fraction based attacks and lattice reduction
based attacks can be extended to RSA-like cryptosystem over elliptic curves E(Zpq)
due to KMOV.

ii



Chapter 0

Introduction

Cryptogarphy is a tool used in the protection of information regarding national

and private sector by means of cryptosystems. There are different cryptosystems

like classical and public key. In 1978 Rivest, Shamir and Adleman discovered first

practical public key cryptosystem named after them as RSA. RSA is used in appli-

cations such as e-mail, e-banking etc. The study of security analysis of cryptosystem

called cryptanalysis. Much research is done on the security analysis of RSA. The

secret information of the RSA parameters (p, q, d) is obtained from the public infor-

mation (N, e) in the cryptanalysis of RSA. This may be attained by factorizing N .

In the past three decades lots of weaknesses of RSA with respect to its variants are

identified and the study of cryptanalysis of RSA has gained importance.

In RSA cryptosystem, the encryption and decryption are based on the fact that for

N = pq, the modulus for RSA, for p, q distinct primes and if 1 ≤ e ≤ ϕ(N) with

(e, ϕ(N)) = 1 and d, the multiplicative inverse of e modulo ϕ(N), then (me)d = m

mod N , for any message m in ZN . The security of this system depends on the

difficulty of finding factors of a composite positive integer, that is product of two

large primes.

In 1990, M.J. Wiener [48] was the first one to describe a cryptanalytic attack on the
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use of short RSA decryption exponent d. This attack is based on continued fraction

algorithm which finds the fraction t
d

that is a convergent of e
N

, where t = ed−1
ϕ(N)

, in a

polynomial time when d < N0.25 for N = pq and q < p < 2q.

The studies on Wiener’s attack on RSA with small decryption exponents led to the

refinement of attack bounds on the decryption exponent.

In 2000, D. Boneh and G. Durfee [5] improved the Wiener bound on d from N0.25

to N0.292, for q < p < 2q using lattice reduction theory.

In 2001, a lattice attack on RSA with short secret exponent d, for d less than N0.29

was given by J. Blömer and A. May [3], this is slightly less than that of Boneh and

Durfee but this method requires lattices of dimension smaller than the approach by

Boneh and Durfee.

In 2002, B de Weger [47], for d = N δ, p − q = Nβ and q < p < 2q extended the

Wiener’s attack in the range N0.25 ≤ d ≤ N0.75−β, using continued fractions and

the bound improved to δ < 1
6
(4β + 5) − 1

3

√
(4β + 5)(4β − 1) using lattice based

techniques in [5] and the bound improved to δ < 1 −
√

2β − 1
2

using sub-lattice

based techniques in [5] under the condition δ > 2− 4β.

In 2008, Subhamoy Maitra and Santanu Sarkar [30] instead of considering p−q = Nβ,

considered |p − ρq| ≤ Nγ

16
where 1 ≤ ρ ≤ 2 to get the bound when d = N δ and

δ < 1
2
− γ

2
, for |p − ρq| ≤ Nγ

16
and γ ≤ 1

2
using continued fractions and also showed

that this bound on δ can be extended using the lattice based techniques [31].

In 2006, E. Jochemsz and A. May [18] gave a new attack on an RSA variant called

common prime RSA. In 1995, R.G.E. Pinch in [37], proved that Wieners attack on

RSA Cryptosystem with small decryption exponent may be extended to RSA-like

cryptosystems on elliptic curves and Lucas sequences.

In this project we described the refinement of all these attacks on RSA by cate-
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gorizing the attacks as attacks based on continued fractions and attacks based on

lattice reduction and proposed extensions of these attacks on RSA with respect to

other variants of RSA and RSA-like cryptosysytem over elliptic curves E(Zpq) due

to KMOV.

We first described the continued fraction based attacks of M.J. Wiener and its

extensions by B de Weger and Subhamoy Maitra and Santanu Sarkar [21] and then

proposed that the Wieners extensions can also be extended to RSA-like Cryptosys-

tem over elliptic curves E(Zpq) due to KMOV. Next we described the lattice re-

duction based attacks on RSA by Boneh-Durfee, Blömer-May, B de Weger and

Maitra-Sarkar. All these existing lattice reduction based attacks are with respect to

low decryption exponent d of RSA.

We proposed the extensions of lattice reduction attacks on RSA with respect to

small multiplicative inverse of p − 1 or q − 1 modulo e and with respect to small

multiplicative inverse of ϕ(N) modulo e, the public encryption exponent.

If e = Nα > p − 1, r and s the multiplicative inverses of p − 1 and q − 1 modulo

e respectively, then for (x0, y0) solution of the polynomial congruence f(x, y) ≡ 0

mod e, for f(x, y) = x(y + A) − 1 with A =
⌈√

N
⌉
− 1 and N δ, Nγ upper bounds

for x0, y0 respectively, we implemented the idea of Boneh and Durfee as in [5]

based on lattice reduction techniques to our polynomial congruence and proved

that the attack works for δ <
3α+γ−2

√
γ(3α+γ)

3
when both x and y shifts are used

and δ < α−γ
2

when only x-shifts are used. Further we improved the bound for δ

as α − γ(1 + α) < δ < α − √αγ and δ <
2α−6γ+2

√
α2−αγ+4γ2

5
by implementing the

sublattice based techniques of Boneh-Durfee and Blömer-May respectively.

We also extended the lattice attacks on RSA if the multiplicative inverse k of ϕ(N)

modulo e is small for q < p < 2q and e = Nα > p+ q, the prime sum. This case can
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be considered even when both (p − 1) mod e and (q − 1) mod e do not have small

inverses but ϕ(N) mod e has small inverse. For k ≤ N δ, the attack bounds for δ are

described by repeating the above lattice based techniques. Further noted that for

β ≈ 0.5, the maximum bound for δ can be improved when the prime sum p+ q is in

the composed form p+ q = 2nk0 + k1 for known positive integer n and for unknown

suitably small integers k0, k1. By using lattice based techniques to the polynomial

congruence f(x, y, z) ≡ 0(mode) for

f(x, y, z) =


(N + 1)x+ xy + (2n)xz − 1 if |k0| ≤ |k1|

2n
′
x(N + 1) + xy + 2n

′
xz − 2n

′
if |k1| ≤ |k0|

where 2n
′

is an inverse of 2n mod e, the attack bound for δ is such that

δ < 1
2
α − 1

2
γ1 + 1

16
γ2 − 1

16

√
48(α− γ1)γ2 + 33γ2

2 where Nγ1 , Nγ2 are the upper

bounds for max{|k0|, |k1|}, min{|k0|, |k1|} respectively. Later we slightly improved

the previous bound by using the sub-lattice based techniques given by J. Blömer,

A. May in [3] to the above polynomial congruence and this method requires lattice

of smaller dimension than the above method. The new bound on δ is 1
2
α − 1

2
γ1 −

1
6

√
6(α− γ1)γ2 + 3γ2

2 and showed that this is a little bit greater than the former

bound graphically. Note that this new attack bound is also an attack bound for

the deciphering exponent d. The corresponding refinement of attack bounds in each

case is depicted explicitly in tabular forms.

The project is organized as follows:

In Chapter 1 of Preliminaries, basic concepts of Cryptography, Continued fractions

and Lattice reduction theory that are employed throughout the book are described
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[6][26][2][14][29][8][12].

In Chapter 2 the attacks on RSA and RSA-like cryptosystem over elliptic curves

E(Zpq) due to KMOV based on continued fractions are described. The Wiener’s at-

tack on RSA cryptosystem and its extension given by B de Weger, Maitra - Sarkar

are described in section 2.1 and 2.2 respectively. In section 2.3 analysis on ex-

tending Wiener’s attack to RSA-like cryptosystem over elliptic curves E(Zpq) due

to KMOV is given. In section 2.4 we proposed that the Wieners extensions on

RSA that refine the attack bound may be extended to RSA-like cryptosystem over

elliptic curves E(Zpq) due to KMOV.

In Chapter 3 we review some of the existing lattice based attacks on RSA with

respect to low decryption exponent, based on modified Coppersmith methods for

finding small roots of bivariatate integer polynomial equations due to Howgrave-

Graham. In section 3.1, we described the method of finding small roots of univari-

ate integer modular equations given by Howgrave-Graham. In section 3.2, 3.3,

3.4, 3.5 and 3.6, we described the Boneh and Durfee’s attack, Blömer and May’s

attack, B de Weger attack, Subbhamoy Maitra and Santanu Sarkar’s attack and A.

Nitaj and M.O. Douh’s attack on RSA respectively and noted that these attacks can

be extended to RSA-like cryptosystem over elliptic curves E(Zpq) due to KMOV in

section 3.7.

In Chapter 4 we mount an attack on RSA when the multiplicative inveres of p− 1

or q− 1 modulo the public encryption exponent e is small, that is less than or equal

to N δ, for some small δ. In section 4.1 considering a bivariate polynomial con-

gruence with one of the small inverses as a root and we gave attack bounds for δ,

using lattice based techniques in the direction of Boneh- Durfee and Blömer-May for

the proposed polynomial congruence. We analyze these bounds with respect to the
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prime difference p− q in section 4.1.1 and with respect to p− ρq, for ρ such that

ρq is a better approximation for p in section 4.1.2 and further in section 4.2 it is

noted that repeating the above arguments the attack may be extended to RSA-like

cryptosystem over elliptic curves E(Zpq) due to KMOV.

In Chapter 5 we mount an attack on RSA when ϕ(N) has small multiplicative in-

verse k modulo e, the public encryption exponent and with a composed prime sum

p+ q, i.e., p+ q = 2nk0 + k1 for a known positive integer n for some small suitable

unknown integers k0 and k1. In section 5.1 for k ≤ N δ, we gave attack bounds for

δ using lattice based techniques by considering a bivariate polynomial congruence

with one of the inverse as a root. In section 5.2, we further refined attack bounds

for δ for β ≈ 0.5 by taking the prime sum p + q as a composed prime sum i.e.,

p+q = 2nk0 +k1 for a known positive integer n and small suitable unknown integers

k0 and k1 and applying the lattice based arguments for trivariate polynomials with

the multiplicative inverse ϕ(N) modulo e as one root. Also we provide a new attack

bound for the deciphering exponent d when the prime sum p + q = 2nk0 + k1 and

analyzed with Boneh and Durfee’s deciphering exponent bound for appropriately

small k0 and k1. In section 5.3 it is noted that these lattice-based attacks on

RSA can be extended to RSA-like cryptosystem over elliptic curves E(Zpq) due to

KMOV.

All the computations regarding, LLL-algorithm for lattice reduction, resultant of

polynomials, prime number generations, plotting of graphs are done using the SAGE-

7.0.ova software.



Chapter 1

Preliminaries

This chapter contains basic concepts of cryptography, RSA, security of RSA, con-

tinued fractions, lattices, lattice basis reduction and theorems based on lattice re-

duction techniques that are employed throughout the book [2][6][8][12][14][26][29].

Some basic concepts of modular arithmetic and KMOV-Public key cryptosystem

over elliptic curves are included in Appendix A and B respectively.

1.1 Cryptography

Cryptography is a study of methods of sending messages in disguised form. The

message that is to be sent is called plaintext message and the message received in

disguised form is called ciphertext message. The process of converting a plaintext

to a ciphertext is enciphering. The process of converting a ciphertext to a plaintext

is deciphering [26].

Enciphering and Deciphering Transformations:

Let P be the set of all possible plaintext message units and C be the set of all

possible ciphertext message units. Let k be a parameter, then the function Ek :

P → C which is 1-1 and onto, is called enciphering transformation and the function
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Dk : C → P is called deciphering transformation [6][26].

The enciphering transformation may be constructed by labeling the message units

with mathematical objects like integers, vectors, points on curve etc.

Definition 1.1.1. A cryptosystem is a tuple (P , C,K, E ,D) where

1. P is a finite set of possible plaintexts.

2. C is a finite set of possible ciphertexts.

3. K, the key space is a finite set of possible keys.

4. E = {Ek/k ∈ K} is a family of functions Ek : P → C. Its elements are called

enciphering transformations.

5. D = {Dk/k ∈ K} is a family of functions Dk : C → P . Its elements are called

deciphering transformations.

6. For each e ∈ K, there is d ∈ K such that Dd(Ee(p)) = p, for all p ∈ P [2].

1.1.1 Classical and Public Key Cryptosystems

Classical Cryptosystem:

The sender communicates the secret key to the intended recipient over a secured

channel before the message being interchanged. When the sender and recipient agree

upon the secret key, they communicate with each other. This type of cryptosystem

is called classical cryptosystem [2][41][45].

In this classical cryptosystem the enciphering key is always equal to the deci-

phering key or computing deciphering key is feasible.
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Public Key Cryptosystem:

Maintaining the secrecy of enciphering key in the classical cryptosystem for a long

time seemed to be difficult, hence the search for cryptosystems where the enciphering

key may be made public, but computing the deciphering key is infeasible has gain

importance.

With the advent of existence of one-way functions, cryptosystems whose trans-

formations are one way functions were first introduced by W. Diffie and M. Hellman

in 1976 and are called as public key cryptosystems [2][11][26].

1.1.2 Cryptanalysis

Definition 1.1.2. The science of breaking a cryptosystem is called cryptanalysis.

Cryptanalysis is a means to assure that a cryptosystem is secure. The philosophy

of modern cryptanalysis is based on the Kerchoff’s principle [2], “The security

of cryptosystem must not depend on keeping the cryptoalgorithm secret rather it

should depend only on keeping the key secret”.

1.1.3 RSA Cryptosystem

The RSA cryptosystem [26] [41] is the first public key cryptosystem invented by

Ronald Rivest, Adi Shamir and Leonard Adleman in 1977 and is named after them

as RSA cryptosystem. The security of this system is based on the difficulty of finding

factors of a composite positive integer, that is the product of two large primes.

Key generation in RSA cryptosystem:

Let A and B be two parties wishing to communicate each other. B generates

the public and private keys as follows:
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• B generates randomly two large primes p and q.

• Computes the product N = pq.

• Choose a random integer e ∈ Z∗ϕ(N) with 1 < e < ϕ(N) such that gcd(e, ϕ(N)) =

1, where ϕ(N) is the Euler function [1][7] of N ,

i.e., ϕ(N) = ϕ(pq) = (p− 1)(q − 1).

• B computes the integer d ∈ Z∗ϕ(N) with 1 < d < ϕ(N) such that de ≡ 1

mod ϕ(N), i.e., d is the multiplicative inverse of e in Z∗ϕ(N).

• N is called the RSA modulus, e is called the encryption exponent, and d is

called the decryption exponent.

• The pair (N, e) is the public key and d is the private key for B.

RSA encryption:

• A considers the public key (N, e) of B.

• The message m to be encrypted is taken modulo N , i.e., m ∈ ZN .

• The plaintext m is encrypted by A into the ciphertext c as c = me mod N.

RSA decryption:

• B considers the ciphertext c received from A.

• B decrypts c and obtains plaintext m by computing cd = m mod N.

The decryption is based on the following theorem:

Theorem 1.1.3. Let N = pq, p and q are distinct primes and 1 ≤ e ≤ ϕ(N) with

(e, ϕ(N)) = 1. If d is a multiplicative inverse of e modulo ϕ(N), then med ≡ m

mod N , for any integer m ∈ ZN [21].



11

1.1.4 Security of the Secret Key and Factoring Algorithms

The security of RSA cryptosystem based on the secret key d. Computing the secret

key d is feasible with the knowledge of ϕ(N) = (p− 1)(q− 1), for p, q are the prime

factors of N and d is the multiplicative inverse of e modulo ϕ(N) which is possible

when the factors p, q of N are known.

Hence forth, to break the RSA cryptosystem, there are several factorization tech-

niques developed. Some of the factoring algorithms are given below [2][6][41].

Factoring Algorithms:

Trial Division:

This factorization method based on the fact that composite number N have at least

one prime factor ≤
√
N . For finding a factor N , compute N = aq + r for each

a = 2, 3, 5, 7, 9 · · · , an odd number which is less than are equal to
√
N . This takes

approximately 1
2

√
N divisions with remainders. Thus, the time required to compute

this algorithm is O(N
1
2 ).

Fermat Factorization:

For N = pq, this is a sequential method in which factorization of N is determined

by the solution (x, y) of the diophantine equation x2 − y2 = 4N.

Algorithm of Fermat Factorization Attack:

Step 1: Find positive integers (x, y) a nontrivial solution of a diophantine equation

4N = x2 − y2.

Step 2: Compute for x = [2N
1
2 ], [2N

1
2 ] + 1, [2N

1
2 ] + 2, . . . , the value x2 − 4N until
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x2 − 4N is a square.

Step 3: For x and y in step 2, compute p = 1
2
(x+ y) and q = 1

2
(x− y), which gives

the factors of N as N = pq.

It can be proved that when |p− q| < cN
1
4 , the number of values of x that have

to be tried is at most c2

4
. Therefore, when c is small constant, factoring N is trivial.

The Polard (p− 1) Algorithm:

The (p− 1) method works best for composite integer N with a prime factor p such

that p− 1 has only small prime divisors.

The algorithm proceeds as follows:

Step 1: Choose an integer k which is a multiple of all or most integers up to some

bound B, i.e., k = B! or k = lcm[1, 2, . . . , [B]].

Step 2: Choose a random integer ‘a’ such that 2 < a < n− 2.

Step 3: Compute ak mod N by the repeated squaring method.

Step 4: Compute gcd(ak − 1, N) = d.

Step 5: If d is not a trivial division of N , start over with a new choice of ‘a’ and/or

a new choice of k.

Since k is divisible by all positive integers ≤ B and if p is a prime divisor of N such

that p− 1 has divisors of all small prime powers ≤ B, then k is a multiple of p− 1.

Therefore by using Fermat’s little theorem, ak ≡ 1 mod p, for all integers ‘a’ that

are not divisible by p, i.e., p | ak − 1.
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If ak − 1 is not divisible by N , then gcd(ak − 1, N), is a proper divisor of N .

Pollard’s rho Method of Factoring:

The smallest algorithm for factoring N, that is substantially faster than trial division

is Pollard’s rho method. Then algorithm proceeds as follows:

Step 1: Choose an easily evaluated map f : ZN → ZN such that f(x) = x2 + 1

mod N , a fairly simple polynomial with integer coefficients.

Step 2: Choose some partial value of x, say x = x0 and compute f(x0). Define

x1 = f(x0), x2 = f(f(x0)), . . ., i.e., xj+1 = f(xj) for j = 0, 1, . . ..

step 3: Make comparisons between the different xj’s, until to find some xk such that

xj ≡ xk mod r for some proper divisor of N . Then we have gcd(xj − xk, N)

equal to a proper divisor of N .

As k becomes large, it is very time consuming, as it needs to compute gcd(xj−xk, N)

for each j < k. It is observed that there we may carry out the algorithm by making

out one gcd computation for each k, k = 0, 1, 2, . . ..

If k is an (h+ 1) bit integer, i.e., 2h ≤ k < 2h+1, take j be the largest h bit-integer

given as j = 2h − 1 then compute gcd(xj − xk, n) ∀ k = 0, 1, 2, . . ..

The Quadratic Sieve Method:

The Quadratic sieve was invented by Carl Pomerance in 1981, extending earlier

ideas of Kraitchik and Dixon. The Quadratic Sieve was the fastest known factoring

algorithm until the number field sieve was discoverd in 1993. Still the Quadratic

Sieve is used for numbers up to 110 digits long.

This method works as follows:
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If N is the number to be factored, the Quadratic Sieve attempts to find two

numbers x and y such that x 6≡ ±y mod N and x2 ≡ y2 mod N , then using

(x− y)(x+ y) ≡ 0 mod N and compute gcd(x− y,N) by Euclidean algorithm.

If gcd(x− y,N) = d and 1 < d < N , we get a non-trivial factor of N .

Now to find such x and y, consider the polynomial f(x) = (x + [
√
N ])2 − N ,

then f(x) ∈ Z[x] and of degree 2.

If x is an integer, then (x+ [
√
N ])2 ≡ f(x) mod N , where the congruence is not

trivial.

Now we proceed to find a set of distinct integers x1, x2, . . . , xk such that f(x1) ·

f(x2) · . . . · f(xk) is a square, i.e, f(x1) · f(x2) · . . . · f(xk) = y2.

Now taking x = (x1 + [
√
N ])(x2 + [

√
N ]) . . . (xk + [

√
N ]), we have

x2 = (x1 + [
√
N ])2(x2 + [

√
N ])2 . . . (xk + [

√
N ])2

≡ f(x1) · f(x2) · . . . · f(xk)

≡ y2 mod N

It is infeasible to compute the secret key d from the public key (N, e) whenever

that N = pq is large enough that factoring is computationally infeasible by the

existing factorization algorithms. But there are other attacks like Wiener’s attack

which uses an alternate method in computing the secret key d. In the next section

we discuss the topic of continued fraction on which the wiener’s attack and its

extensions are based on.
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1.2 Continued Fractions

This section introduces the basic concepts of continued fractions [7][10] and also

describes the use of theory of continued fractions to give the best rational approxi-

mation to real numbers.

1.2.1 Finite Continued Fractions

Definition 1.2.1. A rational number q ∈ Q is said to have a finite continued

fraction [24] if q can be expressed as

q = a0 +
1

a1 +
1

a2 +
1

. . . +
1

an

for a0 ∈ Z, ai ∈ N ∀ i > 0 called partial quotients and the continued fraction for

q is denoted as q = [a0; a1, . . . , an].

Theorem 1.2.2. Every rational number has a finite continued fraction and con-

versely every finite continued fraction is a rational number.

1.2.2 Convergents of Finite Continued Fractions

Definition 1.2.3. Let q be a rational number with the continued fraction q =

[a0; a1, . . . , an], then the continued fraction [a0; a1, . . . , ai] is called the ith conver-

gent of q for all 0 ≤ i ≤ n.
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Remark 1.2.4. Let q be a rational number and qi be the partial quotients, then

we have the following recurrence relations [36]

hi = aihi−1 + hi−2,

ki = aiki−1 + ki−2, for h−1 = 1, k−1 = 0, h−2 = 0 and k−2 = 1.

Lemma 1.2.5. Given that [a0; a1, . . . , ai] is the ith convergent of q, then [a0; a1, . . . , ai+

1
ai+1

] is the (i+ 1)st convergent of q.

Theorem 1.2.6. Suppose q ∈ Q has the continued fraction [a0; a1, . . . , an]. Then

Ci = hi
ki

is the ith convergent of q for all 0 ≤ i ≤ n, where

hi = aihi−1 + hi−2,

ki = aiki−1 + ki−2, with h−1 = 1, k−1 = 0, h−2 = 0 and k−2 = 1.

Notation:

Suppose q = [a0; a1, . . . , an], we define qi as qi = [ai; ai+1, . . . , an] for 0 ≤ i ≤ n.

Lemma 1.2.7. For any continued fraction q = [a0; a1, . . . , an], q = qihi−1+hi−2

qiki−1+ki−2
,

0 ≤ i ≤ n.

Since Convergents of a continued fractions play a fundamental role in approx-

imations to real numbers, so we now state some lemmas concerning the central

properties of convergents.

Lemma 1.2.8. The sequence {k1, k2, . . . , kn} is strictly increasing.

Lemma 1.2.9. Let Ci = hi
ki

be the ith convergent of a continued fraction [a0; a1, . . . , an].

Then hiki−1 − hi−1ki = (−1)i−1 for i ≥ 1.
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Corollary 1.2.10. Let Ci = hi
ki

be the ith convergent of a continued fraction

[a0; a1, . . . , an], then for i ≥ 0, gcd(hi, ki) = 1.

Lemma 1.2.11. The sequence of convergents {C0, C1, . . . , Cn} of a continued frac-

tion [a0; a1 . . . an] satisfy the following infinite chain of inequalities

C0 < C2 < . . . < Cn < Cn−1 < Cn−3 < . . . < C3 < C1 if n is even.

C0 < C2 < . . . < Cn−1 < Cn < Cn−2 < . . . < C3 < C1 if n is odd.

Further, r = lim
n→∞

Cn exits and for every j ≥ 0, C2j < lim
n→∞

Cn < C2j+1.

1.2.3 Infinite Continued Fractions

Definition 1.2.12. An irrational number S is said to have an infinite continued

fraction [13] if S = lim
n→∞

[a0; a1, . . . , an], for a0 ∈ Z, ai ∈ N ∀ i > 0 and it can be

expressed as

q = a0 +
1

a1 +
1

a2 +
1

. . . +
1

an + . . .

= [a0; a1, . . . , an, . . .]

Theorem 1.2.13. Every irrational number has an infinite continued fraction and

conversely every infinite continued fraction is an irrational number.

Now in the following, we proceed to give the theorem on best rational approxi-

mation to a real number using the continued fraction.
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Lemma 1.2.14. Let Cn = hn
kn

be the nth convergent of a real number r. If a and b

are integers with 1 ≤ b < kn+1, then |rkn − hn| ≤ |rb− a|.

Theorem 1.2.15. Let Cn = hn
kn

be the nth convergent of a real number r. Then for

any a, b ∈ Z, 1 ≤ b ≤ kn, ∣∣∣∣r − hn
kn

∣∣∣∣ ≤ ∣∣∣r − a

b

∣∣∣ .
The main theory of rational approximations to real number is contained in the

following theorem, which plays a vital role in attacking RSA cryptosystem.

Theorem 1.2.16. Let r be a real number. For any integers a and b with gcd(a, b) =

1 such that
∣∣r − a

b

∣∣ < 1
2b2

, b ≥ 1, then a
b

is a convergent of r.

1.3 Lattice Reduction

In this section we state few basic results on lattices, describe briefly lattice basis

reduction [14][29]. Also describe Coppersmith’s theorems and Howgrave-Graham

Lemma that are based on lattice reduction techniques [8][12].

Definition 1.3.1. Let b1, b2, ..., bn ∈ Rm be a set of linearly independent vec-

tors. The lattice L generated by b1, b2, ..., bn is the set of linear combinations

of b1, b2, ..., bn with coefficients in Z.

A basis for L is any set of independent vectors that generates L. The dimension

of L is the number of vectors in a basis for L.

Remark 1.3.2. If L is a full rank lattice, means n = m then the determinant of

L is equal to the determinant of the n× n matrix whose rows are the basis vectors

b1, b2, ..., bn.
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Theorem 1.3.3. Any two bases for a lattice L are realted by a matrix having

integer coefficients and determinant equal to ±1.

Definition 1.3.4. Any integral (or integer) lattice is a lattice all of whose vectors

have integer coordinates. Equivalently, an integral lattice is an additive subgroup

of Zm for some m ≥ 1.

Definition 1.3.5. A subset L of Rm is an additive subgroup if it is closed under

addition and subtraction. It is called a discrete additive subgroup if there is a

positive constant ε > 0 with the following property: for every b′ ∈ L,

L ∩ {b ∈ Rm : ||b′ − b|| < ε} = {b′}

where ‖ . ‖ denotes the Euclidean norm on vectors.

Theorem 1.3.6. A subset of Rm is a lattice if and only if it is a discrete additive

subgroup.

Definition 1.3.7. Let L be a lattice of dimension n and let b1, b2, ..., bn be a ba-

sis for L. The fundamental domain (or fundamental parallelepiped) for L

corresponding to this basis is the set

F(b1, b2, ..., bn) = {t1b1 + t2b2 + ...+ tnbn : 0 ≤ ti < 1}.

Theorem 1.3.8. Let L ⊂ Rn be a lattice of dimension n and let F be a fundamental

domain for L. Then every vector b ∈ Rn can be written in the form b = t+ b′ for a

unique t ∈ F and a unique b′ ∈ L.
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Equivalently, the union of the translated fundamental domains

F + b′ = {t+ b′ : t ∈ F}.

as b′ ranges over the vectors in the lattice L exactly covers Rn.

Definition 1.3.9. Let L be a lattice of dimension n and let F be a fundamental

domain for L. Then the n-dimensional volume of F is called the determinant of

L. It is denoted by det(L).

Definition 1.3.10. An orthogonal basis for a vector space V is a basis {b1, b2, ..., bn}

with the property that

bi · bj = 0 for all i 6= j.

The basis is orthonormal if in addition, ||bi|| = 1 for all i.

If V ⊂ Rm is a vector space of dimension n, then for any basis b1, b2, ..., bn of

V , the standard method by Gram-Schmidt is used to obtain an orthogonal basis

b∗1, b
∗
2, ..., b

∗
n for V is given in the following algorithm:

Set b∗1 = b1.

Loop i = 2, 3, ..., n.

Compute µij = bi · b∗j/||b∗j ||2 for 1 ≤ j < i.

Set b∗i = bi −
i−1∑
j=1

µijb
∗
j .

End Loop

Figure 1.1: Gram-Schmidt Algorithm.



21

Theorem 1.3.11. Let B = {b1, b2, ..., bn} be a basis for a lattice L and let

B∗ = {b∗1, b∗2, ..., b∗n} be the associated Gram-Schmidt orthogonal basis. Then

det(L) :=
n∏
i=1

‖ b∗i ‖ .

Remark 1.3.12. The basic vectors b1, ..., bn as being vectors of a given length that

describe the sides of the parallelepiped F , then for basis vectors of given lengths, the

largest volume is obtained when the vectors are pairwise orthogonal to one another.

Theorem 1.3.13. (Hadamard’s Inequality). Let L be a lattice, take any basis

b1, ..., bn for L, and let F be a fundamental domain for L. Then

detL = Vol(F) ≤ ||b1||||b2|| · · · ||bn||.

1.3.1 Short Vectors in Lattices

The Shortest Vector Problem(SVP): Find a shortest nonzero vector in a lattice

L, i.e., find a nonzero vector b ∈ L that minimizes the Euclidean norm ||b||.

Shortest Basis Problem(SBP): Find a basis b1, ..., bn for a lattice that is shortest

in some sense. For example, we might require that

max
1≤i≤n

||bi|| or
n∑
i=1

||bi||2

be minimized. There are thus many different versions of SBP, depending on how

one decides to measure the “size” of a basis.

Theorem 1.3.14. (Hermite’s Theorem). Every lattice L of dimension n contains
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a nonzero vector b ∈ L satisfying

||b|| ≤
√
n det(L)

1
n .

Remark 1.3.15. For a given dimension n, Hermite’s constant γn is the smallest

value such that every lattice L of dimension n contains a nonzero vector b ∈ L

satisfying

||b||2 ≤ γn det(L)
2
n .

Remark 1.3.16. There are versions of Hermite’s theorem that deal with more than

one vector. For example, one can prove that an n-dimensional lattice L always has

a basis b1, ..., bn satisfying

||b1|||b2|| · · · ||bn|| ≤ n
n
2 (detL).

Definition 1.3.17. The Hadamard ratio of the basis B = {b1, ..., bn} is defined

to be the quantity

H(B) =

(
detL

||b1|| · · · ||bn||

) 1
n

.

Remark 1.3.18. The Hadamard ratio H(B) satisfies 0 < H(B) ≤ 1, and the closer

that the value is to 1, the more orthogonal are the vactors in the basis.

Definition 1.3.19. For any a ∈ Rn and any R > 0, the (closed) ball of radius

R centered at a is the set

BR(a) = {x ∈ Rn : ||x− a|| ≤ R}.

Definition 1.3.20. Let S be a subset of Rn.
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(a) S is bounded if the lengths of the vectors in S are bounded. Equivalently,

S is bounded if there is a radius R such that S is contained within the ball

BR(0).

(b) S is symmetric if for every point a in S, the negation −a is also in S.

(c) S is convex if whenever two points a and b are in S, then the entire line

segment connecting a and b lies completely in S.

(d) S is closed if it has the following property: If a ∈ Rn is a point such that

every ball BR(a) contains a point of S, then a is in S.

Theorem 1.3.21. (Minkowski’s Theorem). Let L ⊂ Rn be a lattice of dimension

n and let S ⊂ Rn be a symmetric convex set whose volume satisfies

Vol(S) > 2n det(L).

Then S contains a nonzero lattice vector.

If S is also closed, then it suffices to take Vol(S) ≥ 2n det(L).

1.3.2 LLL Algorithm

The Lenstra-Lenstra-Lovász (LLL) algorithm is an iterative algorithm that trans-

forms a given lattice basis into an LLL-reduced one and also solves SVP(Shortest

Vector Problem) up to a factor of Cn, where C is a small constant and n is the di-

mension of the lattice. Thus, the LLL algorithm comes close to solve SVP in small

dimensions but is not guaranteed to output a shortest vector in large dimensions.

Using the set {b∗1, b∗2, ..., b∗n} of associated Gram-Schmidt vectors, LLL reduced basis

is defined as follows:
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Definition 1.3.22. Let B = {b1, b2, ..., bn} be a basis for a lattice L and let B∗ =

{b∗1, b∗2, ..., b∗n} be the associated Gram - Schmidt orthogonal basis. The basis B is

said to be LLL reduced if the following conditions hold:

• (Size Condition) |µi,j| =
|bi·b∗j |
||b∗j ||2

≤ 1
2

for all 1 ≤ j < i ≤ n.

• (Lovász Condition) ||b∗i ||2 ≥
(

3
4
− µ2

i,i−1

)
||b∗i−1||2 for all 1 < i ≤ n.

The LLL reduction algorithm is given as follows:

INPUT: A basis {b1, b2, ..., bn} for a lattice L.

OUTOUT: LLL reduced basis {b1, b2, ..., bn}

1. Compute the Gram-Schmidt basis {b∗1, b∗2, ..., b∗n} and coefficents µi,j for 1 ≤ j < i ≤ n

2. Set k = 2

3. while k ≤ n do

4. for j = (k − 1) down to 1 do

5. Set bk = bk − bµk,je b∗j [Size reduction]

6. Update the values µk,j for 1 ≤ j < k

7. end for

8. if ||b∗k||2 ≥
(

3
4
− µ2

k,k−1

)
||b∗k−1||2 then [Lovász Condition]

9. k = k + 1

10. else

11. Swap bk with bk−1

12. Update the values b∗k, b
∗
k−1, ||b∗k||2, ||b∗k−1||2, µk−1,j and µk,j for 1 ≤ j < k,

and µi,k, µi,k−1 for k < i ≤ n

13. end if

14. end while

Figure 1.2: The LLL lattice reduction algorithm.
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Properties of LLL Algorithm:

Let L be a lattice spanned by < u1, u2, ..., un >. Then the LLL (Lenstra-Lenstra-

Lovász) algorithm, given < u1, u2, ..., un >, runs in polynomial time and produces a

new basis < b1, b2, ..., bn > of L satisfying:

1. ‖ b∗i ‖2≤ 2 ‖ b∗i+1 ‖2, for all 1 ≤ i < n.

2. For all i, if bi = b∗i +
i−1∑
j=1

µjb
∗
j then | µj |≤ 1

2
for all j.

Theorem 1.3.23. Let L be a lattice and b1, b2, ..., bn be an LLL-reduction basis of

L. Then ‖ b1 ‖≤ 2n/2det(L)1/n.

Theorem 1.3.24. Let L be a lattice spanned by < u1, u2, ..., un > and let

< b1, b2, ..., bn > be the result of applying LLL to the given basis. Suppose u∗min ≥ 1

where u∗min is a lower bound on the length of the shortest vector in L. Then ‖ b2 ‖≤

2n/2det(L)
1

n−1 .

In the following theorem, we state a general result on the size of the individual

reduced basis vectors.

Theorem 1.3.25. Let L be a lattice and b1, b2, ..., bn be an LLL-reduction basis of

L. Then ‖ b1 ‖≤‖ b2 ‖≤ ... ‖ bi ‖≤ 2
n(n−1)

4(n+1−i) det(L)
1

n+1−i for all 1 ≤ i ≤ n.

Complexity of LLL Algorithm:

In paper [29], Lenstra, Lenstra and Lovász proves that the LLL algorithm terminates

and runs in polynomial-time for any lattice in Rn but only gives a precise complexity

for lattices in Zn and is given in the following theorem.

Theorem 1.3.26. Let {b1, b2, ..., bn} be a basis for a lattice L. The algorithm

described in Figure 1.1 terminates in a finite number of steps and returns an LLL
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reduced basis for L.

More precisely, let B = max ||bi||. Then the algorithm executes the main k

loop(Steps 3-14) no more than O(n2 log n+ n2 logB) times. In particular, the LLL

algorithm is a polynomial-time algorithm.

1.3.3 Howgrave-Graham Results

An important application of lattice reduction found by Coppersmith in 1996 [8]

is finding small roots of low-degree polynomial equations. This includes modu-

lar univariate polynomial equations and bivariate integer equations. Coppersmith

methods initiated the study of RSA attacks with lattice basis reduction techniques.

Howgrave-Graham modified the Coppersmith methods by using this theory on mod-

ular solutions to integer solutions. In this section we state the theorems on Copper-

smith methods and state the theorems of Howgrave-Graham on modular solutions

to integer solutions.

In the following theorem Coppersmith states that the problem of finding small roots

is easy by using the LLL lattice reduction algorithm.

Theorem 1.3.27. Given a monic polynomial P (x) of degree δ, modulo an integer N

of unknown factorization, one can find in time polynomial in (logN, 2δ) all integers

x0 such that P (x0) = 0 mod N and |x0| ≤ N1/δ [8].

Similarly, the problem of solving bivariate integer polynomial equations seems

to be hard. Letting p(x, y) be a polynomial in two variables with integer coeffi-

cients, p(x, y) =
∑
i,j

pi,jx
iyj it consists in finding all integer pairs (x0, y0) such that

p(x0, y0) = 0. We see that integer factorization is a special case as one can take

p(x, y) = N − xy. In the following theorem Coppersmith [8] shows that using LLL,
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the problem of finding small roots of bivariate polynomial equations is easy:

Theorem 1.3.28. Let p(x, y) be an irreducible polynomial in two variables over Z,

of maximum degree δ in each variable separately. Let X and Y be upper bounds on

the desired integer solution (x0, y0), and let W = maxi,j|pij|X iY j. If XY < W 2/(3δ),

then in time polynomial in (logW, 2δ), one can find all integer pairs (x0, y0) such

that p(x0, y0) = 0, |x0| ≤ X, and |y0| ≤ Y .

An alternative techniques for finding small roots of univariate modular equations

given by Howgrave-Graham in [12]. The following lemma, due to Howgrave-Graham,

shows that if the roots of a univariate modular equation h(x) = 0 mod N are suffi-

ciently small, then the equality h(x0) = 0 holds not only modulo N , but also over

Z for any such small root x = x0.

Lemma 1.3.29. Let h(x) ∈ Z[x] which is a sum of at most ω monomials. Suppose

that h(x0) = 0 mod N where |x0| ≤ X and

‖ h(xX) ‖< N/
√
ω. Then h(x0) = 0 holds over the integers [17].

Lemma 1.3.30. (Generalized Howgrave-Graham’s Lemma). Let h(x1, ..., xn) ∈

Z[x1, ..., xn] be an integer polynomial that consists of at most ω monomials. Suppose

that

1. h
(
x

(0)
1 , ..., x

(0)
n

)
= 0 mod N for some

∣∣∣x(0)
1

∣∣∣ < X1, ...,
∣∣∣x(0)
n

∣∣∣ < Xn, and

2. ||h(x1X1, ..., xnXn)|| < N√
ω
.

Then h
(
x

(0)
1 , ..., x

(0)
n

)
= 0 holds over the integers [17].

Howgrave-Graham modified the Coppersmith methods by using the above two

results and this modification is reviewed in chapter 3. The generalization of Cop-

persmith and Howgrave-Graham methods to multivariate polynomials depends on
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the concept of resultant of two polynomials, in the following we define resultant and

some remarks on resultant.

1.3.4 Resultant

Definition 1.3.31. Given polynomials f and g of positive degree, write them in

the form

f = a0x
l + . . .+ al, a0 6= 0

g = b0x
m + . . .+ bm, b0 6= 0

Then the Sylvester matrix of f and g with respect to x, denoted by Syl(f, g, x),

is the coefficient matrix of the system of equations given above. Thus Syl(f, g, x) is

the following (l +m)(l +m) matrix:

Syl(f, g, x) =



a0 0 . . . 0 b0 0 . . . 0

a1 a0
. . .

... b1 b0
. . .

...

a2 a1
. . . 0 b2 b1

. . . 0

...
. . . a0

...
. . . b0

... a1 · · · b1

al−1 bm−1

al al−1
... bm bm−1

...

0 al
. . . 0 bm

. . .

...
. . . . . . al−1

...
. . . . . . bm−1

0 . . . 0 al 0 . . . 0 bm


Definition 1.3.32. The resultant of two polynomials f(x1, x2, . . . , xn) and

g(x1, x2, . . . , xn) with respect to the variable xi for some 1 ≤ i ≤ n, is defined as
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the determinant of Sylvester matrix of f(x1, x2, . . . , xn) and g(x1, x2, . . . , xn) when

considered as polynomials in the single indeterminate xi, for some 1 ≤ i ≤ n.

Remark 1.3.33. The resultant of two polynomials is non-zero if and only if the

polynomials are algebraically independent .

Remark 1.3.34. If
(
x

(0)
1 , x

(0)
2 , . . . , x

(0)
n

)
is a common solution of algebraically inde-

pendent polynomials f1, f2, . . . , fm for m ≥ n, then these polynomials yield

g1, g2, . . . , gn−1 resultants in n−1 variables and continuing so on the resultants yield

a polynomial t(xi) in one variable with xi = x
(0)
i for some i is a solution of t(xi).

Note the polynomials considered to compute resultants are always assumed to be

algebraically independent.

Geometrically progressive matrices is used in the improvement of attack bounds,

we define the geometrically progressive matrices and state a theorem on geometri-

cally progressive matrices in the following.

1.3.5 Geometrically Progressive Matrices

Now we describe the definition of geometrically progressive matrices in the following.

Definition 1.3.35. LetM be an (a+1)b×(a+1)bmatrix. The pair (i, j) corresponds

to (bi+ j)th column of M . Similarly a pair (k, l) can be used to index (bk+ l)th row

of M . Let C,D, c0, c1, c2, c3, c4, β be real numbers with C,D, β ≥ 1. A matrix M is

said to be geometrically progressive with parameters (C,D, c0, c1, c2, c3, c4, β) if the

following conditions hold for all i, k in [0, ..., a] and for all j, l in [1, ..., b] :

i) |M(i, j, k, l)| ≤ CDc0+c1i+c2j+c3k+c4l,

ii) M(k, l, k, l) = Dc0+c1k+c2l+c3k+c4l,
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iii) M(i, j, k, l) = 0 whenever i > k or j > l,

iv) βc1 + c3 ≥ 0 and βc2 + c4 ≥ 0.

Theorem 1.3.36. Let M be an (a+ 1)b× (a+ 1)b geometrically progressive matrix

with parameters (C,D, c0, c1, c2, c3, c4, β), and let B be a real number. Define

SB = {(k, l) ∈ 0, ...a× 1, ...b|M(k, l, k, l) = B}

and set w = |SB|. If L is the lattice defined by rows (k, l) ∈ SB of M , then

det(L) ≤ ((a+ 1)b)w/2(1 + C)w
2
∏

(k,l)∈SB

M(k, l, k, l).

This theorem on geometrically progressive matrices is used in the improvement

of attack bounds for RSA with low decryption exponent by Boneh-Durfee.



Chapter 2

Cryptanalysis Based on Continued

Fractions, for RSA with Small

Deciphering Exponent

In this chapter we first describe Wiener’s attack on RSA and describe some of

the extensions of Wiener’s attack that refine the attack bounds. All the attacks

described in this chapter are based on the theory of continued fractions. R.G.E.

Pinch in his paper [37] extended the Wiener’s attack to RSA-like cryptosystems

over elliptic curves and LUC cryptosystem, in this chapter we extended Wiener’s

attack and Wiener extensions to RSA-like cryptosystem over elliptic curves due

to KMOV, by developing certain estimates on ψ(N) = (p + 1)(q + 1), which is

an analogue to ϕ(N) for RSA-like cryptosystem with elliptic curves E(Zpq) due to

KMOV.

2.1 Wiener’s Attack on RSA Cryptosystem

In this section we describe an attack on RSA due to M.J. Wiener. The main idea

of Wiener’s attack [48] is that certain restrictions of the decryption exponent d
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allow the fraction t
d

to be a convergent of e
N

, where t = ed−1
ϕ(N)

, which follows by the

approximation theorem.

Theorem 2.1.1. (Approximation Theorem): Let r be a real number, for any

integer a and b with gcd(a, b) = 1 such that |r− a
b
| < 1

2b2
, b ≥ 1 then a

b
is convergent

of r [7][10].

Estimation of ϕ(N) when q < p < aq for some a ∈ N given in the following

lemma, plays a key role in Wiener’s attack.

Lemma 2.1.2. Let N = pq, where p and q are odd primes such that q < p < aq

for some a ∈ N. Then

N − (a+ 1)
√
N < ϕ(N) < N [21][24].

Theorem 2.1.3. (Wiener’s attack): Let N = pq, for q < p < aq be the modulus

for RSA, e be the public encryption exponent and d be the decryption exponent. If

d ≤ N
1
4√

2(a+1)
, then t

d
is a convergent of e

N
, for t = ed−1

ϕ(N)
[21][24].

Theorem 2.1.4. (Implementation of Wiener’s attack): Let d ≤ N
1
4√

2(a+1)
and

for any convergent t′

d′
of e

N
, take ϕ′(N) = ed′−1

t′
, x′ = N−ϕ′(N)+1

2
and y′ =

√
x′2 −N .

If x′, y′ ∈ N, then the private key (q, p, d) = (x′ − y′, x′ + y′, d′) [21][24].

Remark 2.1.5. Let the bound N
1
4√

2(a+1)
of d be denoted by Bd(a), for a ≥ 2 and

note Bd(a) decreases as ‘a’ increases. This is graphically represented in the following

figure for a fixed N .
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Figure 2.1: Impact of Wiener’s attack

Note 2.1.6. As the impact of Wiener’s attack is maximum for a = 2, in all of the

extensions of Wiener’s attack in the later sections a is taken to be 2.

Example 2.1.7. Let (N, e) = (2016991, 1084453) be the public key.

The continued fraction of e
N

= [0; 1, 1, 6, 7, 4, 1, 1, 2, 11, 2, 38].

The ith convergent of e
N

is hi
ki

= aihi−1+hi−2

aiki−1+ki−2
, for i = 0, 1, 2, . . . 11, where h−1 =

1, h−2 = 0, k−1 = 0, k−2 = 1 and ai’s are the quotients of e
N

.

We have ϕ′(N) = ed′−1
t′

, for each convergent t′

d′
of e

N
. For each convergent hi

ki
,

ϕ′(N) = eki−1
hi

, x′ = N−ϕ′(N)+1
2

and y′ =
√

(x′)2 −N . The first three convergents

0
1
, 1

1
and 1

2
fail the Wiener test, since each of x′, y′ 6∈ N.
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For the next convergent 7
13

, we have

ϕ′(N) =
13 · 1084453− 1

7

= 2013984 and which gives x′ = 1504 and y′ = 495.

As x′, y′ ∈ N, by Wiener’s test 7
13

is the required convergent of e
N

with

(q, p, d) = (x′ − y′, x′ + y′, d′)

= (1009, 1999, 13).

As the Wiener’s attack fails for the decryption exponent d above the bound

Bd(a) of Wiener’s attack, the study of weakness of RSA in this direction of the

bound Bd(a) and its further extensions gained importance. In the next section we

describe the extensions of Wiener’s attack for q < p < 2q.

2.2 Wieners Extensions on RSA

2.2.1 Wieners Extension on RSA with Small Prime

Difference p− q by B de Weger

In this section we describe the extension of the Wiener’s result by B de Weger to

the case of small prime difference based on continued fraction algorithm [47].

The following theorem yields an estimate of ϕ(N) that is used for this attack.
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Theorem 2.2.1. Estimation of ϕ(N) when q < p < 2q is given by

N + 1− 3√
2
N

1
2 < ϕ(N) < N + 1− 2N

1
2 [21][24].

Wiener result is applicable when the secret exponent d < N
1
4 , and B de Weger

extended this result from N
1
4 to N

3
4
−β, where p − q = Nβ, the prime difference by

the following theorem.

Theorem 2.2.2. Let N = pq for q < p < 2q be the modulus of RSA with the

encryption exponent e and the decryption exponent d. For ∆ = p − q = Nβ, if

d < N
3
4
−β, then t

d
is a convergent of e

N+1−2N
1
2

.

Example 2.2.3. Let (N, e) = (2691281, 571607) be a public key.

The continued fraction expression of 571607
2691281

is [0; 4, 1, 2, 2, 2, 1, 27, 2, 2, 3, 3, 1, 1, 7].

The sequence of convergents of above continued fraction is{
0
1
, 1

4
, 1

5
, 3

14
, 7

33
17
80
, 24

113
, 665

3131
, . . .

}
. The first five convergents fail the Wiener’s test and

the next convergents are not useful, since the fifth convergent already has a denom-

inator that is much larger than N
1
4 ≈ 40.5. Therefore as the decryption exponent is

not less than the bound Bd(2), Wiener’s attack does not yield the result. Now we

apply B de Weger method in this case and obtain the result (p, q, d) as follows:

We consider the infinite continued fraction of e

N+1−2N
1
2

= 571607
2688000.975

≈ 0.212651336

given as [0; 4, 1, 2, 2, 1, 3, 4, 23, . . .]. The sequence of convergents of the above contin-

ued fraction is
{

0
1
, 1

4
, 1

5
, 3

14
, 7

33
, 10

47
, 37

174
, 158

743
, . . .

}
. The first seven convergents are not

good approximations of e

N+1−2N
1
2

, as ϕ′(N), x′ and y′ defined in Wiener’s attack, are

not integers. The next convergent 158
743

is a good approximation to e

N+1−2N
1
2

, since

ϕ′(N)=2688000, x′ = 1641 and y′ = 40 are positive integers. Therefore, the public

key



36

(p, q, d) = (x′ + y′, x′ − y′, d)

= (1681, 1601, 743).

Note 2.2.4. In the above example δ ≈ 0.446 > 1
4
, so Wiener’s attack fails to give

a required convergent of e
N

. But the above extension of Wiener attack succeeds

through a convergent of e

N+1−2N
1
2

for δ just a little less than 3
4
− β. Therefore B de

Weger method is a refinement of the attack bound for d, over Wiener’s method.

2.2.2 Wieners Extension on RSA for Small Difference

p− ρq with ρq, a Better Approximation of p by

Maitra-Sarkar

In this section we describe an extension of Wiener’s result given by Subhamoy Maitra

and Santanu Sarkar in the paper [30] based on the theory of continued fractions [48].

B de Weger has shown that for d = N δ, δ < 3
4
− β RSA is insecure as in this case

t
d

is a convergent of e

N+1−2N
1
2

. B de Weger method is a refinement of the attack

bound for d over Wiener’s method and note this refinement is depending on the

prime difference p − q = Nβ but note that this refinement is not significant when

p− q ≈ N0.5. Thus the refinement increases when β decreases i.e., for smaller prime

differences. In [30] instead of considering the prime difference p − q, Subhamoy

Maitra and Santanu Sarkar considered |p−ρq| for ρ such that 1 ≤ ρ ≤ 2 and ρq is a

better approximation for p. They proved that for a given ρ (known to the attacker),

|p− ρq| ≤ Nγ

16
and for d < N

1−γ
2 , t

d
is a convergent of e

N−
(√

ρ+ 1√
ρ

)√
N+1

and is based

on the following proposition.
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Proposition 2.2.5. Let |p− ρq| ≤ Nγ

16
, where γ ≤ 1

2
and 1 ≤ ρ ≤ 2. Then

∣∣∣∣p+ q −
(
√
ρ+

1
√
ρ

)√
N

∣∣∣∣ < Nγ

8
.

The attack bound for δ when |p− ρq| ≤ Nγ

16
for 1 ≤ ρ ≤ 2, γ ≤ 1

2
is given in the

following theorem.

Theorem 2.2.6. Let |p− ρq| ≤ Nγ

16
with 1 ≤ ρ ≤ 2, γ ≤ 1

2
and d = N δ, then N can

be factored in O(poly(logN)) time when δ < 1−γ
2

.

The above theorem states that this RSA attack runs in a polynomial time. So

the RSA attack exists if |p− ρq| ≤ Nγ

16
for 1 ≤ ρ ≤ 2, γ ≤ 1

2
and if d < N

1−γ
2 .

Example 2.2.7. Let p = 2017 and q = 1009, which gives N = 2035153.

Then ϕ(N) = (p − 1)(q − 1) = 20321281. Note for d = N δ, δ is such that

δ > 3
4
− β ≈ 0.28, therefore B de Weger method does not yield the result but by

Maitra-Sarkar’s method, in this example for ρ = 2 we get 1−γ
2

= 0.375 for γ = 0.25

as |p− 2q| = 1 < N0.25

16
= 2.3606374. Thus, in this case for any d < N0.375, RSA will

be insecure. Therefore we take d such that N0.374 < d < N0.375.

In particular for d = 229, then the corresponding e, the multiplicative inverse

of d modulo ϕ(N) is 1242349, that is e = 1242349 and the value for t satisfy-

ing e = 1 + tϕ(N), is 140. The continued fraction expression of e
N− 3√

2

√
N+1

is

[0;1,1,1,1,2,1,11,1,245,. . . ]. More partial quotients are not useful, as d = 229 < 245.

The corresponding convergents of the above continued fraction expression are

0
1
, 1

1
, 1

2
, 2

3
, 3

5
, 8

13
, 11

18
, 129

211
, 140

229
, . . ., and the required convergent is 140

229
. From this, we get

the public key (p, q, d) = (2017, 1009, 229).
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The refinement process of RSA attack bounds on decryption exponent d using the-

ory of continued fractions is given in the following table.

Attack Refining the RSA attack bounds

Wiener’s attack d < N0.25.

Wieners extension on RSA N0.25 < d < N0.75−β,

by B de Weger for Nβ = |p− q|.

Wieners extension on RSA N0.25 < d < N
1−γ
2 ,

by Maitra-Sarkar for |p− ρq| = Nγ

16
, where γ ≤ 1

2
, 1 ≤ ρ ≤ 2.

Table 2.1: Refinement process of RSA attack bounds on decryption exponent d.

2.3 Extending Wiener’s Attack to an RSA-Like

Cryptosystem over Elliptic Curves

In this section we describe an extension of Wiener’s attack to an RSA-like cryp-

tosystem over elliptic curves. RSA-like cryptosystem over elliptic curves considered

by Koyama-Maurer-Okamoto-Vanstone[46][50] for the elliptic curves in the form

Eb(N) : y2 = x3 + b mod N for N = pq, p, q primes with p ≡ q ≡ 2 mod 3.

The curves Eb(p) : y2 = x3 + b mod p and Eb(q) : y2 = x3 + b mod q are super

singular with orders #Eb(p) = p+ 1 & #Eb(q) = q+ 1. Further as the group E(Zpq)

is such that E(Zpq) ' E(Zp) ⊕ E(Zq), the order of the group E(Zpq) is given as

#E(ZN) = #E(Zp) ·#E(Zq) = (p+1)(q+1). This system is also known as KMOV.

In the KMOV system the receiver chooses primes p, q with p ≡ q ≡ 2 mod 3 takes

N = pq and chooses e such that 1 ≤ e ≤ (p+1)(q+1) with gcd(e, (p+1)(q+1)) = 1
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and makes (N, e) public. The sender represents the message M = (m1,m2) as a

point on elliptic curve Eb : y2 = x3 + b, for b = m2
2 −m3

1 mod N . The message is

encrypted as C = eM and the cipher text C is sent to the receiver. The receiver for

decryption uses the decryption exponent d such that 1 ≤ d ≤ (p + 1)(q + 1) with

ed ≡ 1 mod (p+ 1)(q+ 1) and obtains the message as dC = deM = M mod N . The

computations are carried using the Group laws on elliptic curves [46][14].

In [37] R.G.E. Pinch shows that Wiener’s attack extends to RSA-like cryp-

tosystems on elliptic curves and Lucas sequences. In this section we show that

Wiener’s attack can be extended to KMOV by developing an estimation for ψ(N) =

#E(ZN) = (p+1)(q+1). This estimation on ψ(N) when q < p < aq for some a ∈ N

plays a key role in extending Wiener’s attack to KMOV is given in the following

lemma.

Lemma 2.3.1. Let N = pq, where p and q are odd primes such that q < p < aq

for some a ∈ N. Then

N + 1 < ψ(N) < N + (a+ 1)
√
N − 1.

Proof. By defining of ψ(N), ψ(N) = (p+ 1)(q + 1) we have

ψ(N) > N + 1.

As a ≥ 2 and q <
√
N , we have q + 2

a+1
< q + 1 ≤

√
N. Then from the inequality

p < 2q we get

ψ(N) < N + (a+ 1)
√
N − 1.



40

�

Theorem 2.3.2. (Wiener’s attack on RSA-like over E(ZN) due to KMOV)

Let N = pq, for q < p < aq be the modulus for RSA, e be the public encryption

exponent and d be the decryption exponent. If d ≤ N
1
4√

2(a+1)
, then t

d
is a convergent

of e
N

, for t = ed−1
ψ(N)

.

Proof. First note for d ≤ N
1
4√

2(a+1)
, we have

a+ 1√
N
≤ 1

2d2
. (2.3.1)

As ed−1
t

= ψ(N) and by the right inequality ψ(N) < N + (a + 1)
√
N − 1 in the

above lemma, we get

ed− 1

dN
<

(a+ 1)t
√
N

dN
+
Nt

dN
− t

dN
.

Then from this and as t ≥ 1, we obtain

e

N
− t

d
<

(a+ 1)t
√
N

dN
. (2.3.2)

Now by using the left inequality N + 1 < ψ(N) of the above lemma and as

(a+ 1)t
√
N > 0, we have

e

N
− t

d
> −(a+ 1)t

√
N

dN
. (2.3.3)

Also we have

t < d, for e < ψ(N). (2.3.4)
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From (2.3.2), (2.3.3) and (2.3.4),

∣∣∣∣ eN − t

d

∣∣∣∣ < (a+ 1)√
N

. (2.3.5)

By (2.3.1) and (2.3.5), we get

∣∣∣∣ eN − t

d

∣∣∣∣ < 1

2d2
.

Therefore, t
d

is convergent of e
N

by Approximation Theorem �

Theorem 2.3.3. (Implementation of Wiener’s attack):Let d ≤ N
1
4√

2(a+1)
and for

any convergent t′

d′
of e

N
, take ψ′(N) = ed′−1

t′
, x′ = ψ′(N)−N−1

2
and y′ =

√
(x′)2 −N . If

x′, y′ ∈ N, then ψ′(N) = ψ(N) and the private key is (p, q, d) = (x′ + y′, x′ − y′, d′).

Proof. For y′ =
√

(x′)2 −N,N = (x′ + y′)(x′ − y′).

If x′, y′ ∈ N , then the possible cases are

(i)(x′ − y′) = and (x′ + y′) = N

(ii)(x′ − y′) = q and (x′ + y′) = p, as N = pq and q < p.

For (x′ − y′) = 1 and (x′ + y′) = N , we have N+1
2

= x′.

Then ψ′(N)−N − 1 = 2x′ = N + 1.

Thus 2(N + 1) = ψ′(N)

=
ed′ − 1

t′

< N + (a+ 1)
√
N − 1, as

e

N + (a+ 1)
√
N − 1

<
t′

d′
, for some t′, d′

and ψ(N) < N + (a+ 1)
√
N − 1.
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Therefore N
1
2 < a+ 1.

Which is a contradiction, as we are choosing a large N.

Hence case(i) is not possible.

Therefore, the only possible case is q = x′ − y′, p = x′ + y′.

By defining of x′, we have x′ =
ψ′(N)−N − 1

2
.

Then ψ′(N) = 2x′ +N + 1

= p+ q +N + 1

= ψ(N).

Now as ed′ = 1 mod ψ′(N) and ψ′(N) = ψ(N), d = d′.

Therefore, for ψ′(N), x′, y′ ∈ N, the private key (p, q, d) = (x′ + y′, x′ − y′, d′). �

Example 2.3.4. (Implementation of Wiener’s attack)

Let (N, e) = (59729269, 36366887) be the public key.

The continued fraction of e
N

= 36366887
59729269

is [0; 1, 1, 1, 1, 3, 1, 10, 1, 1, 2, 1, 3, 1, 44, 4, 1, 30]

and the first six convergents of the above continued fractions 0
1
, 1

1
, 1

2
, 2

3
, 3

5
and11

18
are

not good approximations of e
N

as ψ′(N), x′, y′ 6∈ N.

The next convergent 14
23

is a good approximation to e
N

as ψ′(N) = 59745600, x′ =

8165, y′ = 2634 are such that ψ′(N), x′, y′ ∈ N.

Therefore the private key (p, q, d) = (x′ + y′, x′ − y′, d′) = (10799, 5531, 23).
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2.4 Extending Wieners Extension to an

RSA-Like Cryptosystem over Elliptic Curves

R.G.E. Pinch in his paper [37] showed that Wiener’s attack applies to KMOV as

well. In [47] B de Weger and in [30] Subhamoy Maitra - Santanu Sarkar are proposed

Wiener extension on RSA cryptosystem refining the attack bound for the decryption

exponent d. In this section we show that these Wieners extensions also apply to the

RSA-like cryptosystems over elliptic curves due to KMOV. This is done by looking

at ψ(N) := (p + 1)(q + 1) as an analogue of Euler’s function ϕ(N) in the RSA-like

cryptosystems over the specific elliptic curves Eb : y2 = x3 + b mod N . In this

section we proposed that the above Wiener extensions can be extended to RSA-like

cryptosystem over elliptic curves due to KMOV by developing certain estimates on

ψ(N), we prove the results regarding the estimates for ψ(N) in the following lemma.

Lemma 2.4.1. If q < p < 2q and ψ(N) = (p + 1)(q + 1) then N + 1 + 2N
1
2 <

ψ(N) < N + 1 + 3√
2
N

1
2 .

Proof. We have ψ(N) = (p+ 1)(q + 1) = N + 1 + p+ q.

Therefore as p+ q > 2N
1
2 note ψ(N) > N + 1 + 2N

1
2 . . . (1).

Now as
(
p+ q + 3√

2
N

1
2

)(
p+ q − 3√

2
N

1
2

)
< 0 for q < p < 2q, note(

p+ q − 3√
2
N

1
2

)
< 0 . . . (2)

This implies ψ(N) = N + 1 + p+ q <
(
N + 1 + 3√

2
N

1
2

)
.

From (1) and (2) N + 1 + 2N
1
2 < ψ(N) < N + 1 + 3√

2
N

1
2 . �

The estimation of ψ(N) given in the above lemma leads to an approximate

convergent for t
d

is described in the following theorem.
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Theorem 2.4.2. (Wieners extension on RSA-like over E(ZN) due to KMOV)

Let N = pq for q < p < 2q with the encryption exponent e and decryption exponents

d such that ed−1
t

= ψ(N). If ∆ = p− q = Nβ, d < N
3
4
−β, then t

d
is a convergent of

e

N+1+2N
1
2

.

Proof. We have

∣∣∣∣ e

N + 1 + 2N
1
2

− t

d

∣∣∣∣ =

∣∣∣∣ e

N + 1 + 2N
1
2

+
e

ψ(N)
− e

ψ(N)
− t

d

∣∣∣∣
≤
∣∣∣∣ e

N + 1 + 2N
1
2

− e

ψ(N)

∣∣∣∣+

∣∣∣∣ e

ψ(N)
− t

d

∣∣∣∣
= e

∣∣∣∣ 1

N + 1 + 2N
1
2

− 1

ψ(N)

∣∣∣∣+
1

ψ(N)d
,

as e > 0 and ed− 1 = ψ(N)t.

< ψ(N)

∣∣∣∣∣ψ(N)− (N + 1 + 2N
1
2 )

(N + 1 + 2N
1
2 )ψ(N)

∣∣∣∣∣+
1

ψ(N)d
,

as e < ψ(N).

= ψ(N)

∣∣∣∣∣N + 1 + p+ q −N − 1− 2N
1
2

ψ(N)(N + 1 + 2N
1
2 )

∣∣∣∣∣+
1

ψ(N)d

=
p+ q − 2N

1
2

N + 1 + 2N
1
2

+
1

ψ(N)d
as p + q− 2N

1
2 > 0.

<
∆2

4N
1
2

(
1

N + 1 + 2N
1
2

)
+

1

ψ(N)d
,

as p + q− 2N
1
2 =

∆2

p + q + 2N
1
2

.

<
∆2

4N
1
2

(
1

ϕ(N)

)
+

1

ϕ(N)d
,

as N + 1 + 2N
1
2 > ϕ(N) and ψ(N) > ϕ(N).

Therefore

∣∣∣∣ e

N + 1 + 2N
1
2

− t

d

∣∣∣∣ < 1

ϕ(N)

(
∆2

4N
1
2

+
1

d

)
. . . (1)
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Now note ψ(N) > 3
4
N , since p+ q < 1

4
+ 1 for all N

1
2 > 9 by assuming N is large.

Also note 8d < N for all N
1
4 > 8, since d < N

3
4 .

Therefore, for ∆ = Nβ and d = N δ and substitute ϕ(N) > 3
4
N and N > 8d in (1),

we get

∣∣∣∣ e

N + 1 + 2N
1
2

− t

d

∣∣∣∣ < 1

3
N2β− 3

2 +
4

3Nd

<
1

3
N2β− 3

2 +
1

6N2δ

and as 2β − 3
2
< −2β for all δ < 3

4
− β, we have

∣∣∣∣ e

N + 1 + 2N
1
2

− t

d

∣∣∣∣ < 1

2d2
.

Therefore t
d

is a convergent of e

N+1+2N
1
2

for d < N
3
4
−β. �

Now using the above estimates for ψ(N) we prove the following theorem of

implementation on Wiener’s extension.

Theorem 2.4.3. (Implementation of Wieners extension):Let d < N
3
4
−β for

p − q = Nβ and for any convergent t′

d′
of e

N+1+2N
1
2

, take ψ′(N) = ed′−1
t′
, x′ =

ψ′(N)−N−1
2

and y′ =
√

(x′)2 −N . If x′, y′ ∈ N, then ψ′(N) = ψ(N) and the pri-

vate key is (p, q, d) = (x′ + y′, x′ − y′, d′).

Proof. For y′ =
√

(x′)2 −N,N = (x′ + y′)(x′ − y′).

If x′, y′ ∈ N , then the possible cases are

(i)(x′ − y′) = and (x′ + y′) = N

(ii)(x′ − y′) = q and (x′ + y′) = p, as N = pq and q < p.

For (x′ − y′) = 1 and (x′ + y′) = N , we have N+1
2

= x′.
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Then ψ′(N)−N − 1 = 2x′ = N + 1.

Thus 2(N + 1) = ψ′(N).

=
ed′ − 1

t′

< N + 2 +
3√
2
N

1
2 , as

e

N + 2 + 3√
2
N

1
2

<
t′

d′
, for some t′, d′

and ψ(N) < N + 1 +
3√
2
N

1
2 .

Therefore N
1
2 < 3√

2
.

Which is a contradiction, as we are choosing a large N.

Hence case(i) is not possible.

Therefore, the only possible case is q = x′ − y′, p = x′ + y′.

By defining of x′, we have x′ =
ψ′(N)−N − 1

2
.

Then ψ′(N) = 2x′ +N + 1

= p+ q +N + 1

= ψ(N).

Now as ed′ = 1 mod ψ′(N) and ψ′(N) = ψ(N), d = d′.

Therefore, for ψ′(N), x′, y′ ∈ N, the private key (p, q, d) = (x′ + y′, x′ − y′, d′). �

The following example demonstrates the working of KMOV cryptosystem.

Example 2.4.4. The receiver chooses primes p = 5, q = 11 takes N = pq = 55.

Then he chooses e = 5 and makes (N, e) public.

The sender chooses a message M = (2, 3), a point on the elliptic curve Eb : y2 =
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x3 + 1 mod 55 and enciphers the message as C = eM mod N and sends the cipher

text C to the receiver. The computations are done by using the group laws on

elliptic curves and the algorithms like doubling and adding algorithm [9] may be

used for computations

C = 5M = 5(2, 3) = (1 · 22 + 0 · 21 + 1 · 20)(2, 3)

= (2(2(2, 3)) + (2, 3))

= (2, 52) mod 55.

For decryption the receiver computes 29C mod 55 as follows

29C = (1 · 24 + 1 · 23 + 1 · 22 + 0 · 21 + 1.20)C

= 2(2(2(2(2, 52)))) + 2(2(2(2, 52))) + 2(2(2, 52)) + (2, 52) mod 55

= (2, 3) mod 55

= M mod 55, the required message.

Example 2.4.5. (Implementation of Wieners extension)

Let (N, e) = (10610503, 8916809) be the public key.

The continued fraction of

e

N + 1 + 2N
1
2

=
8916809

10610503 + 1 + 2 · (10610503)
1
2

∼ 0.83985

= [0; 1, 5, 4, 11, 5, 2, 1, 1, 1 . . .]
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The first five convergents of the above continued fractions are

0

1
,
1

1
,
5

6
,
21

25
,
236

281
, . . . .

The required convergent is 236
281

as ψ′(N) = 10617048, x′ = 3272, y′ = 309 are such

that ψ′(N), x′, y′ ∈ N.

Therefore the private key (p, q, d) = (x′ + y′, x′ − y′, d′) = (3581, 2963, 281).

Similarly we can extend the generalized version by Subhamoy Maitra and San-

tanu Sarkar’s result to RSA-like cryptosystem over elliptic curves due to KMOV to

get the bound for d, as d < N
1−γ
2 for |p − ρq| ≤ Nγ

16
and 1 ≤ ρ ≤ 2, γ ≤ 1

2
. By the

inequality
∣∣∣p+ q −

(√
ρ+ 1√

ρ

)√
N
∣∣∣ < Nγ

8
in Proposition 2.2.5 note we have the es-

timation N+1+
(√

ρ+ 1√
ρ

)√
N− Nγ

8
< ψ(N) < N+1+

(√
ρ+ 1√

ρ

)√
N+ Nγ

8
and

this leads to an approximate convergent for t
d

is described in the following theorem.

Theorem 2.4.6. Let N = pq for q < p < 2q with the encryption exponent e and

decryption exponents d such that ed−1
t

= ψ(N). If |p− ρq| ≤ Nγ

16
, 1 ≤ ρ ≤ 2, γ ≤ 1

2

and if d = N δ, δ < 1−γ
2

, then t
d

is a convergent of e

N+1+
(√

ρ+ 1√
ρ

)√
N

.

Proof. Since |p− ρq| ≤ Nγ

16
, we have

∣∣∣∣p+ q −
(
√
ρ+

1
√
ρ

)√
N

∣∣∣∣ < Nγ

8
(2.4.1)

by Proposition 2.2.5. Also we have 2
(√

ρ+ 1√
ρ

)√
N ≤ 3

√
2
√
N + 2, as ρ ≤ 2 and

3
√

2
√
N + 2 < N, as N is such large integer. Therefore

N +

(
√
ρ+

1
√
ρ

)√
N + 1 >

N

2
. (2.4.2)
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Now we have,

∣∣∣∣∣∣ e

N +
(√

ρ+ 1√
ρ

)√
N + 1

− t

d

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣ e

N +
(√

ρ+ 1√
ρ

)√
N + 1

− e

ψ(N)

∣∣∣∣∣∣+

∣∣∣∣ e

ψ(N)
− t

d

∣∣∣∣
<

∣∣∣ψ(N)−
(
N +

(√
ρ+ 1√

ρ

)√
N + 1

)∣∣∣
N +

(√
ρ+ 1√

ρ

)√
N + 1

+
1

dψ(N)
,

as e < ψ(N)

<
Nγ

8N
2

+
1

4d2
,

by (2.4.1), (2.4.2) and by assuming ψ(N) > 4d.

Thus, ∣∣∣∣∣∣ e

N +
(√

ρ+ 1√
ρ

)√
N + 1

− t

d

∣∣∣∣∣∣ < Nγ−1

4
+

1

4d2
.

Therefore, when Nγ−1

4
< 1

4d2
we get

∣∣∣∣∣∣ e

N +
(√

ρ+ 1√
ρ

)√
N + 1

− t

d

∣∣∣∣∣∣ < 1

2d2
.

Putting d = N δ in the inequality Nγ−1

4
< 1

4d2
, we get δ < 1−γ

2
.

Therefore, for δ < 1−γ
2

, t
d

is a convergent of the continued fraction of e

N+1+
(√

ρ+ 1√
ρ

)√
N

.

�

Now using the above estimates for ψ(N) we prove the following theorem of im-

plementation on Wieners extension.
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Theorem 2.4.7. (Implementation of Wieners extension):Let d < N
1−γ
2 for

|p− ρq| ≤ Nγ

16
, 1 ≤ ρ ≤ 2, γ ≤ 1

2
and for any convergent t′

d′
of e

N+1+
(√

ρ+ 1√
ρ

)√
N

, take

ψ′(N) = ed′−1
t′
, x′ = ψ′(N)−N−1

2
and y′ =

√
(x′)2 −N . If x′, y′ ∈ N, then ψ′(N) =

ψ(N) and the private key is (p, q, d) = (x′ + y′, x′ − y′, d′).

Proof. For y′ =
√

(x′)2 −N,N = (x′ + y′) · (x′ − y′).

If x′, y′ ∈ N , then the possible cases are

(i)(x′ − y′) = 1 and (x′ + y′) = N

(ii)(x′ − y′) = q and (x′ + y′) = p, as N = pq and q < p.

For (x′ − y′) = 1 and (x′ + y′) = N , we have N+1
2

= x′.

Then ψ′(N)−N − 1 = 2x′ = N + 1. Thus 2(N + 1) = ψ′(N).

From the inequality ψ(N) < N + 1 +
(√

ρ+ 1√
ρ

)√
N + Nγ

8
and for some t′ and d′,

we have

2(N + 1) < N + 1 +

(
√
ρ+

1
√
ρ

)√
N +

Nγ

8
.

This gives the inequality

N
1
2 <

(
√
ρ+

1
√
ρ

)
+
Nγ− 1

2

8
− 1

N
1
2

.

For 1 ≤ ρ ≤ 2 and γ ≤ 1
2
, we have

N
1
2 <
√

2 + 1.

Which is a contradiction, as we are choosing a large N.

Hence case(i) is not possible.
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Therefore, the only possible case is q = x′ − y′, p = x′ + y′.

By defining of x′, we have x′ =
ψ′(N)−N − 1

2
.

Then ψ′(N) = 2x′ +N + 1

= p+ q +N + 1

= ψ(N).

Now as ed′ = 1 mod ψ′(N) and ψ′(N) = ψ(N), d = d′.

Therefore, for ψ′(N), x′, y′ ∈ N, the private key (p, q, d) = (x′ + y′, x′ − y′, d′). �

Example 2.4.8. (Implementation of Wieners extension)

Let (N, e) = (8162729, 578321) be the public key.

For ρ = 2, the infinite continued fraction of e

N+
(√

ρ+ 1√
ρ

)√
N+1

= 578321

8162729+
(√

2+ 1√
2

)√
8162729+1

is [0; 14, 7, 1, 1370, 11, 12, . . .] and the sequence of convergents is {0
1
, 1

14
, 7

99
, 8

113
, 10967

154909
, . . .}.

The required convergent is 8
113

as ψ′(N) = 8168784, x′ = 3027, y′ = 1000 are such

that ψ′(N), x′, y′ ∈ N.

Therefore the private key (p, q, d) = (x′ + y′, x′ − y′, d′) = (4027, 2027, 113).

2.5 Summary

The idea of Wiener is that certain restrictions of d allow to obtain a convergent of e
N

that is useful in finding the factors p, q of N and the decryption exponent d. Further

Wieners extension given by B de Weger and Subhamoy Maitra - Santanu Sarkar is

the idea of obtaining a convergent of e

N+1−2N
1
2

and e

N−
(√

ρ+ 1√
ρ

)√
N+1

respectively

rather than that of e
N

, which increases the bound of d, from N
1
4 to N δ, for δ < 3

4
−β

and for δ < 1−γ
2

respectively. These ideas are based on developing certain estimates
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for ϕ(N). Looking at ψ(N) = (p + 1)(q + 1) as the analogue of Euler’s function

ϕ(N) in the RSA-like cryptosystem over the elliptic curves E(Zpq) due to KMOV

developing certain estimates on ψ(N), we proposed that the Wiener’s attack and

its extensions can be extended to RSA-like cryptosystem over elliptic curves E(Zpq)

due to KMOV.



Chapter 3

Cryptanalysis Based on Lattice-Based

Techniques, for RSA with Small

Deciphering Exponent

In this chapter we review some of the lattice attacks on RSA with low private decryp-

tion exponent, based on modified Coppersmith method due to Howgrave-Graham

for finding small roots of bivariate integer polynomial equations and extended strat-

egy of Jochemsz and May for finding roots of multivariate polynomials. Also we

noted that all these Lattice-based attacks on RSA can be extended to the RSA-like

cryptosystem over E(Zpq) due to KMOV.

3.1 Finding small roots of univariate integer

modular equations

If the relation between the parameters N, p, q, e, and d of RSA can be converted

into a polynomial with a small root and if the root can be found, then one can
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find the secret information (d, p, q), thereby breaking RSA. RSA attacks using lat-

tice based techniques were initiated with the method developed by Coppersmith to

find small integer solutions for univariate modular equations. Coppersmith methods

later were modified and generalized to integer solutions of multivariate polynomi-

als. Howgrave-Graham modified Coppersmith method, Boneh-Durfee generalized

the method to bivariate and Jochemsz-May [18] generalized to multivariate poly-

nomial modular equations. Using the lemma by Howgrave-Graham, he modified

Coppersmith method, to find the small roots of univariate modular equations. In

the following we describe Howgrave-Graham method.

Theorem 3.1.1. Given a monic polynomial P (x) of degree δ, modulo an integer N

of unknown factorization, one can find in polynomial time for all integers x0 such

that P (x0) = 0 mod N and |x0| ≤ 1
2
N1/k.

Proof. Let p(x) be a univariate modular polynomial of degree k

p(x) = xk + ak−1x
k−1 + . . .+ a1x+ a0 (mod N).

To find the small roots of a monic univariate modular equation p(x) = 0 (mod N) :

Let h be an integer h ≥ 2, and natural numberX define a lower triangular (hk)×(hk)

matrix M = (mi,j). The entry mi,j is given by ei,jX
j−1, where ei,j is the coefficient

of xj−1 in the expression,

qu,v(x) = N (h−1−v)xu(p(x))v

with v = b(i − 1)/kc, and u = (i − 1) − kv. Notice that qu,v(x0) = 0 (mod Nh−1)

for all u, v ≥ 0. All other entries of the matrix are zero, so it has determinant
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Xhk(hk−1)/2Nhk(h−1)/2.

Let B be an LLL-reduced basis of the rows of M , and denote the first (small)

row vector of B by b1. By the conditions on reduced basis

||b1|| ≤ 2(hk−1)/4X(hk−1)/2N (h−1)/2. (3.1.1)

Letting b1 = cM for some c ∈ Zn also gives

||b1|| ≥
1√
hk

(∣∣∣∣∣
hk∑
i=1

cimi,1

∣∣∣∣∣+ . . .+

∣∣∣∣∣
hk∑
i=1

chkmi,hk

∣∣∣∣∣
)

=
1√
hk

(∣∣∣∣∣
hk∑
i=1

ciei,1

∣∣∣∣∣+ . . .+

∣∣∣∣∣
(

hk∑
i=1

chkei,hk

)
Xhk−1

∣∣∣∣∣
)

≥ 1√
hk
|r(x)| for all |x| ≤ X,

where

r(x) = c1

hk∑
j=1

e1,jx
j−1 + . . .+ chk

hk∑
j=1

ehk,jx
j−1. (3.1.2)

So ||b1|| is “almost” an upper bound for the polynomial r(x) in the entire range

|x| ≤ X. Notice also that r(x0) = 0 (mod Nh−1) since each sum in equation 3.0.2

is zero modulo Nh−1.

By 3.0.1 and 3.0.2 implies that, from the matrix M with a natural number X, we

have a polynomial r(x) that satisfies r(x0) = 0 (modNh−1) and

|r(x)| ≤
(

2(hk−1)/4
√
hk
)
X(hk−1)/2N (h−1)/2 for all |x| ≤ X.
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Thus choosing

X =
⌈
2−1/2(hk)−1/(hk−1)N (h−1)/(hk−1)

⌉
− 1

shows that one can form a polynomial r(x) such that r(x0) = 0 (mod Nh−1) and

|r(x)| < Nh−1 for all |x| ≤ X, therefore by Howgrave-Graham lemma, r(x0) = 0

over the integers as well, for any x0 such that |x0| ≤ X, and p(x0) = 0 mod N .

Solving this univariate equation r(x) over the integers can be done in polynomial

time and then one can test each solution to see if it satisfies p(x0) = 0 (mod N) as

well.

Notice that the bound X → 1
2
N1/k as h→∞. The polynomial r(x) can be formed

from equation 3.0.2 or the coefficient may be obtained by dividing the entries of the

vector b1 by appropriate powers of X. �

Example of Howgrave-Graham method for finding small roots of univariate in-

teger modular equations is given as follows

Example 3.1.2. Consider the polynomial congruence x2 + 22x + 19 ≡ 0 mod 21

with x = 1 is a solution. For h = 2, k = 2, take X ≈ 1
2
(21)

1
2 ≈ 2.29 such that X

is a positive integer, in particular, we take X = 2, then the matrix defined in the

Howgrave-Graham method is given as

M =



21 0× 2 0× 22 0× 23

0 21× 2 0× 22 0× 23

19 22× 2 1× 22 0× 23

0 19× 2 22× 22 1× 23
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Now applying LLL-algorithm to the above matrix we get

MLLL =



−2 2 4 0

0 −4 4 8

17 4 8 0

8 26 −8 16


Then the polynomial r(x) given in the above method is r(x) = −2

1
+ 2

2
·x+ 4

22
·x2+0·x3,

i.e., r(x) = x2 + x− 2 and its integer roots are 1 and −2. But note that −2 is not

a solution for the polynomial congruence x2 + 22x+ 19 ≡ 0 mod 21.

Therefore x = 1 is a root of a univariate modular equation x2 +22x+19 ≡ 0 mod 21

with |x| ≤ X.

This method due to Howgrave-Graham is adapted by Boneh-Durfee to bivariate

polynomials and an attack on RSA is developed. In the following we describe this

attack on RSA due to Boneh-Durfee.

3.2 An Attack on RSA, Based on Lattice Basis

Reduction by Boneh-Durfee

The first improvement of Wiener’s bound for the decryption exponent d uncondi-

tionally is given by Boneh-Durfee in [5] employing lattice-based techniques. In their

first and second results, they executed an attack bound for d, d < N0.284 using

lattice-based techniques and improved the bound for d, d < N0.292 using sub-lattice

based techniques and a strategy of geometrically progressive matrices. Boneh-Durfee

approach is as follows:
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Consider the normal RSA scheme where p, q are balanced, i.e., q < p < 2q and

defining equation of the RSA: ed − k(N + 1 − (p + q)) = 1. Taking s = −(p + q),

note |s| ≤ 3N
1
2 and for A = N +1, above equation can be simplified to −k(A+s) ≡

1 mod e. Also as k = ed−1
ϕ(N)

, if e = Nα(note that α is approximately equal to 1)

and d = N δ for some α, δ, the idea is to find the solution for the Small Inverse

Problem(SVP) as follows:

Given a polynomial f(x, y) = x(A+ y)− 1 to find the root (x0, y0) = (−k, s) for the

congruence f(x, y) ≡ 0 mod e with |x0| < eδ and |y0| < e0.5. As note SIP is solved,

from s = −(p + q) the factorization N is obtained. So the goal is to identify the

values of δ for which the roots (x0, y0) with |x0| < eδ, |y0| < e0.50 can be recovered in

polynomial time. The main idea of Boneh-Durfee is first to transform the modular

equation into an equation over the integers using Howgrave-Graham’s lemma for the

bivariate case. In order to apply Howgrave-Graham lemma Boneh-Durfee defined

for a positive integer m, the shift polynomials gi,k(x, y) and hj,k(x, y) as follows:

gi,k(x, y) = xifk(x, y)em−k and hj,k(x, y) = yjfk(x, y)em−k,

the polynomials gi,k are referred to as x-shifts and analogously the polynomials hj,k

are referred to as y-shifts.

Then, considered the lattice spanned by the coefficient vectors of the polynomials

gi,k(x, y), hj,k(x, y) for certain parameters i, j and k. For each k = 0, 1, ...,m use

gi,k(xX, yY ) for i = 0, ...,m − k, and hj,k(xX, yY ) for j = 1, ..., t, for some param-

eter t to be optimized later. For m = 2 and t = 1, the shift polynomials and the

matrix spanned by x and y shifts are depicted in the following tables.
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Shift Polynomials for m = 2 and t = 1:

k i gi,k(xX, yY )(x− shifts)

0 0 g0,0(xX, yY ) = e2

1 g1,0(xX, yY ) = xXe2

2 g2,0(xX, yY ) = x2X2e2

1 0 g0,1(xX, yY ) = xXAe+ xXyY e− e

1 g1,1(xX, yY ) = x2X2Ae+ x2X2yY e− xXe

2 0 g0,2(xX, yY ) = x2X2A2 + x2X2y2Y 2 + 2xXAyY − 2xY A− 2xXyY + 1

k j hj,k(xX, yY )(y − shifts)

0 1 h0,1(xX, yY ) = e2yY

1 1 h1,1(xX, yY ) = xXyY eA− yY e+ xxy2Y 2e

2 1 h1,2(xX, yY ) = −2xXyY A+ 2x2X2y2Y 2A+ yY − 2xXy2Y 2 + x2X2y3Y 3

When m = 2 and t = 1 the lattice is spanned by the rows of the matrix in the

following Table.

1 x xy x2 x2y x2y2 y xy2 x2y3

i+ k = 0 g0,0 e2 0 0 0 0 0 0 0 0

i+ k = 1 g1,0 0 e2X 0 0 0 0 0 0 0

g0,1 −e eAX eXY 0 0 0 0 0 0

i+ k = 2 g2,0 0 0 0 e2X2 0 0 0 0 0

g1,1 0 −eX 0 eAX2 eX2Y 0 0 0 0

g0,2 1 −2AX −2XY A2X2 2AX2Y X2Y 2 0 0 0

k + j = 1 h1,0 0 0 0 0 0 0 e2Y 0 0

k + j = 2 h1,1 0 0 eAXY 0 0 0 −eY eXY 2 0

k + j = 3 h1,2 0 0 −2AXY 0 A2X2Y 2AX2Y 2 Y −2XY 2 X2Y 3

Table 3.1: The matrix spanned by x and y shifts for m = 2 and t = 1.
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Let LBD denote the lattice and BBD be the corresponding basis. Running LLL al-

gorithm there are two short vectors b1, b2 that satisfy ‖ b1 ‖, ‖ b2 ‖≤ 2
n
2 det(LBD)

1
n−1

where n is the dimension of the lattice. For the hypothesis of Howgrave-Graham’s

lemma, det(LBD) is such that

2
n
2 det(LBD)

1
n−1 ≤ em√

(n)
.

Now as the determinant and the dimension of the lattice LBD satisfy the following

respectively

det(LBD) = e
5+4δ
m

3
+ 3+2δ

4
tm2

+ mt2

4
+ o(m3) and

n = m2

2
+ tm+ o(m2).

Substituting these values in the above inequality and optimizing with respect to t

and ignoring low degree terms, the condition is on δ given as 12−12δ2 +28δ−7 < 0,

i.e., δ < 7
6
− 1

3

√
7 ≈ 0.284. This means that if δ < 0.284 or, equivalently if d < N0.284

by repeating the Howgrave-Graham argument as in Theorem 3.1.1 to bivariate poly-

nomial f(x, y) there are two polynomials g1(x, y) and g2(x, y) constructed using the

vectors b1 and b2 respectively. Note as the common integer solution of g1(x, y) and

g2(x, y) are all modular solutions of f(x, y) ≡ (0 mod e) and the common solutions

of g1(x, y) and g2(x, y) are obtained by finding the resultant r(x) or r(y) of g1(x, y)

and g2(x, y). Then for any solution x0 of r(x) substituting in g1(x, y) and g2(x, y) a

common solution (x0, y0) of g1(x, y) and g2(x, y) gives rise to f(x0, y0) ≡ 0(mode)

and this solution leads to the factorization of N.

Improved bounds:

The results in the above show that the small inverse problem can be solved when
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δ < 0.284. The bound is derived from the determinant of the lattice L, which gives

an upper bound on the lengths of the shortest vectors of the lattice. In the above,

we compute the determinant of a lattice L generated by shifts and powers of f .

Since L is full rank and corresponding matrix is triangular, the determinant is just

the product of the entries on the diagonal-carefully balanced so that this product is

less than 1. Once δ > 0.284 the approach no longer works, as the product exceeds

1 for every choice of m. But if the some of the larger terms of this product were

removed, we might be able to find greater values of δ. This suggests that one can

ignore some rows which have large diagonal values. But unfortunately the resulting

lattice is not of full rank, and computing its determinant is not easy, Boneh-Durfee

used the theorem on “Geometric progressive matrices” to obtain the determinant of

the lattice and improve the bound to 0.292.

Boneh and Durfee also note that using t = 0, that is only x-shifts are used

to construct a lattice basis, one obtains an attack working for d < N0.25. This

reproduces Wieners result.

3.3 An Attack on RSA, Based on Lattice Basis

Reduction with Lower Dimension by Blömer

and May

Blömer and May revisited the above attack [3]. They come up with the bound

0.290. Even though it is slightly less than Boneh and Durfee’s bound, analysis is

much simpler than Boneh and Durfee. They begin their analysis by choosing pa-
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rameters m, t and then construct exactly the same lattice as Boneh and Durfee,

before removal the rows with corresponding basis of BBD. Next they remove certain

rows of BBD to take an intermediate matrix B̄. Let L̄ be the lattice spanned by B̄.

Unlike Boneh-Durfee, they go on removing an equal number of columns in order to

obtain a square matrix. We denote the final matrix constructed by Blömer and May

as BBM and the corresponding lattice LBM . The row vectors of the matrix BBM

are no longer the coefficient vectors of the polynomials gi,k(x, y) and hj,k(x, y) since

they have removed some columns from the initial basis matrix BBD. Notice that

the basis constructed by Boneh and Durfee does not suffer from the same drawback

since they have only removed rows but not columns. In order to apply Howgrave’s

theorem, it is necessary to ensure that the linear combination of bivaraite polynomi-

als evaluates to zero modulo em. Blömer and May show how to associate the rows

of matrix with the polynomials gi,k and hj,k. This means that they show how to

reconstruct a vector ū ∈ L̄ by a vector u ∈ LBM . More significantly, they prove that

short vectors u ∈ LBM lead to short reconstruction vector ū ∈ L̄ i.e., the size of

small vectors found in the eliminated lattice LBM by LLL is the same size as those

found in the original lattice L̄ up to a small correction term.

Steps in construction of the new lattice LBM with basis BBM by Blömer-

May is described in the following:

1. Choose lattice parameters m and t and build the Boneh-Durfee lattice basis

BBD

2. Label the coefficient vectors of the polynomials gi,k(xX, yY ) as the X- block,

the block Xl consist of the l + 1 coefficient vectors of gi,k with i + k = l and
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Xl,k, that is the k-th vectors in the Xl block is the coefficient vector of gl−k,k.

Similarly, define the blocks Y, Yj and Yj,k.

3. In the Yt block of the basis BBD remove every vector except for the last vector

Yt,m, in the Yt−1 block remove every vector except for the last two vectors

Yt,m−1 and Yt,m, and so on. Finally, in the Y1 block remove every vector except

for the last t vectors Ym−t+1, ..., Ym.

4. Remove every vector in the X-block except for the vectors in the t+ 1 blocks

Xm−t, Xm−t+1, ..., Xm.

5. All column vectors with label xlyj, l ≥ j, form the X(l) column block. Anal-

ogously, define the Y (l) column block to consist of all column vectors labeled

with xiyi+l.

6. Delete columns in such a way that the resulting basis is again triangular.

That is, remove all column blocks X(0), X(1), ..., X(m−t−1). Furthermore in

the column block Y (l), l = 1, ..., t, remove the columns labeled with xiyi+l for

0 ≤ i < m− t+ l.

This construction leads to a triangular basis BBM of a new lattice LBM , which

will be used in this approach. As opposed to Boneh and Durfee, this attack do not

remove y-shifts alone to improve the bound δ < 0.284, instead remove some x-shifts

and corresponding columns as well, which retains a square lower triangular matrix

and helps in the computation of the determinant of the lattice.
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Example of Blömer and May lattice for m = 2 and t = 1:

Blocks X(0) X(1) X(1) X(2) X(2) X(2) Y (1) Y (1) Y (1)

1 x xy x2 x2y x2y2 y xy2 x2y3

X0 g0,0 e2 0 0 0 0 0 0 0 0

X1 g1,0 0 e2X 0 0 0 0 0 0 0

g0,1 −e eAX eXY 0 0 0 0 0 0

X2 g2,0 0 0 0 e2X2 0 0 0 0 0

g1,1 0 −eX 0 eAX2 eX2Y 0 0 0 0

g0,2 1 −2AX −2XY A2X2 2AX2Y X2Y 2 0 0 0

Y1 h1,0 0 0 0 0 0 0 e2Y 0 0

Y2 h1,1 0 0 eAXY 0 0 0 −eY eXY 2 0

Y3 h1,2 0 0 −2AXY 0 A2X2Y 2AX2Y 2 Y −2XY 2 X2Y 3

Table 3.2: Blömer-May matrix for m = 2 and t = 1.

Remove the shaded rows and columns of the matrix, whose rows spans the lattice

LBD in the above figure to get a new matrix and its rows spans the new lattice LBM ,

for m = 2 and t = 1.

This attack does not improve the bound d < N0.292 of Boneh and Durfee’s result

but it has several advantages. First, the lattice dimension is reduced. Therefore, in

practice we are able to get closer to the theoretical bounds. Second, the new lattice

basis is triangular. This leads to rather simple proofs.
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3.4 An Attack on RSA with Small Prime

Difference p− q, Based on Lattice Basis

Reduction by B de Weger

Based on lattice based techniques Boneh and Durfee improved the Wiener’s bound

for d = N δ form 0.25 to 0.284 and improved their bounds up to 0.292 using the strat-

egy of Geometrically progressive matrices. In this section we describe the extension

of Boneh and Durfee’s result by B de Weger to the case of small prime difference

based on Lattice-based techniques. In the paper [47], B de Weger shown that the first

result of Boneh and Durfee can be improved to δ < 1
6
(4β+5)− 1

3

√
(4β + 5)(4β − 1)

and the second result of Boneh and Durfee can be improved to δ < 1 −
√

2β − 1
2

under the condition δ > 2− 4β, for the prime difference p− q = Nβ in the direction

of Boneh and Durfee.

Boneh-Durfee considered the polynomial congruence −k(A − s) ≡ 1 mod e for

A = N + 1, s = p + q and eδ and e
1
2 are the upper bounds for the solution of

this congruence p + q and k respectively(e≈N). Instead of taking A = N + 1 and

s = p+ q, B de Weger considered A = N + 1− d2
√
Ne and s = p+ q− d2

√
Ne and

in this case −k(A− s) ≡ 1 mod e. The upper bound for s is such that e2β− 1
2 and is

follows from the below given theorem.

Theorem 3.4.1. If N = pq and ∆ = p− q then

0 < p+ q − 2
√
N <

∆2

4
√
N
.
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Apply the same analysis given in the Boneh-Durfee’s first result to solve the

small inverse problem for the polynomial congruence −k(A − s) ≡ 1 mod e for

A = N + 1−d2
√
Ne, s = p+ q−d2

√
Ne and |s| < e2β− 1

2 , |k| < eδ to get the attack

bounds for δ is such that

δ <
1

6
(4β + 5)− 1

3

√
(4β + 5)(4β − 1).

The second result of Boneh-Durfee’s improved version using the sublattice technique

can be extended under the condition δ > 2−4β as the (iv) condition of geometrically

progressive matrices satisfied for the matrix of sublattice of L (given in Boneh-

Durfee’s second result [5]) only if δ > 2− 4β and the attack bound is

2− 4β < δ < 1−
√

2β − 1

2
.

Note that in this extension the Boneh and Durfee’s attack bounds on RSA im-

proved only if the prime difference p− q is essentially smaller than N
1
2 .

3.5 An Attack on RSA with Small Difference

p− ρq, for ρq a Better Approximation of p,

Based on Lattice Basis Reduction by

Maitra-Sarkar

B de Weger gave an attack bounds for RSA using lattice based techniques in the

direction of Boneh-Durfee’s first and second results when the prime difference p− q
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is bounded. Subhamoy Maitra-Santanu Sarkar gave an attack bounds not only using

the idea of Boneh-Durfee(both results) and also used sub lattice based techniques

given by Blömer - May when ρq − p is bounded for ρ is such that 1 ≤ ρ ≤ 2 and ρq

is a better approximation for p.

Consider the polynomial congruence 1 + x(A + y) ≡ 0 mod e for A = N + 1 −(√
ρ+ 1√

ρ

)√
N with the solutions x = x0 = k and y = y0 = −(p+ q−

(√
ρ+ 1√

ρ

)
).

For e = N and d = N δ, eδ is an upper bound for the solution x0 and form the

Proposition 2.2.5 eγ is an upper bound for y0 for |p− ρq| ≤ Nγ

16
, where γ ≤ 1

2
. The

attack bounds for δ are given by implementing the analysis of Boneh-Durfee in their

first and second results and Blömer - May to the above polynomial congruence in

the following respectively [31]

δ <
γ + 3− 2

√
γ(γ + 3)

3
;

1− 2γ < δ < 1−√γ;

δ <

√
16γ2 − 4γ + 4− (6γ − 2)

5
.

3.6 An Attack on RSA with a Composed

Decryption Exponent, Based on Lattice

Basis Reduction by Nitaj-Douh

In this section, we describe a new attack on RSA proposed by A. Nitaj and M.O.

Douh [35], when the private exponent is in the form d = Md1 + d0 with a known
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integer M and suitably small unknown integers d1 and d2 by using the extended

strategy of Jochemsz and May for finding roots of multivariate polynomials [3]. In

2000, Boneh and Durfee presented an attack on RSA when d < N0.292. When

d = Md1 + d0, this attack enables one to overcome Boneh and Durfees bound and

to factor the RSA modulus.

Suppose d is composed as d = Md1 + d0 where M is known and d1 and d0 are

unknown, then this result shows that one can find the factorization of N if d1 and

d0 are suitably small and the result as follows.

Let e = Nα,M = Nβ, d1 < N δ, d0 < Nγ. If

δ < 1
4
(5− 4γ −

√
12α + 12β − 12γ + 3),

then there is a polynomial time algorithm to factor the modulus N , which breaks

the RSA cryptosystem and is given in the Theorem 3.6.1. The starting point of the

attack is the key equation

ed− kϕ(N) = 1, which can be rewritten as

ed0 − kN + k(p+ q − 1)− 1 = 0(mod Me).

From the left side, a polynomial f(x, y, z) = ex −Ny + yz − 1 is derived and note

(x0, y0, z0) = (d0, k, p + q − 1) is a solution of the modular equation f(x, y, z) =

0 (mod Me) and Nγ, 2Nα+β+δ−1 and 3
√

2
2
N

1
2 are the upper bounds for x0, y0 and

z0 respectively. When the LLL algorithm is applied, three polynomials hi(x, y, z)

for 1 ≤ i ≤ 3 are obtained and since (d0, k, p + q − 1) is a small solution of the

equation f(x, y, z) = 0(modMe), then using the resultant process there is z0 such

that z0 = p+ q − 1. Hence using p+ q − 1 = z0 and pq = N , one can find p and q.

Therefore this is the argument for lattice attack due to Nitaj-Douh as given in the

following theorem.
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Theorem 3.6.1. Let N = pq be an RSA modulus with q < p < 2q. Let M = Nβ

be a positive integer and e = Nα a public exponent satisfying ed− kϕ(N) = 1 with

d = Md1 + d0. Suppose that d1 ≤ N δ and d0 < Nγ. Then one can factor N in

polynomial time if δ < 1
4
(5− 4γ −

√
12α + 12β − 12γ + 3).

This review on lattice attacks of RSA with low decryption exponent d is depicted

in a tabular form describing the refinement process of RSA attack bounds in the

following.

Attack Based on theory Refining the RSA attack bounds

Boneh and Durfee’s attack Lattice based techniques d < N0.284, for e ≈ N .

Boneh and Durfee’s attack Sublattice based techniques d < N0.292, for e ≈ N .

Blömer and May’s attack Sublattice based techniques d < N0.290, for e ≈ N .

with lower dimension

Weger’s attack Lattice based techniques d < N
1
6

(4β+5)− 1
3

√
(4β+5)(4β−1),

for e ≈ N and Nβ = |p− q|.

Weger’s attack Sublattice based techniques N2−4β < d < N1−
√

2β− 1
2 , for e ≈ N and Nβ = |p− q|.

Maitra- Sarkar’s attack Lattice based techniques d < N
γ+3−2

√
γ(γ+3)

3 , for e ≈ N and |p− ρq| ≤ Nγ

16
,

where γ ≤ 1
2

and 1 ≤ ρ ≤ 2.

Maitra- Sarkar’s attack Sublattice based techniques N1−2γ < d < N1−√γ, for e ≈ N and |p− ρq| ≤ Nγ

16
,

where γ ≤ 1
2

and 1 ≤ ρ ≤ 2.

Maitra- Sarkar’s attack Sublattice based techniques d < N
√

16γ2−4γ+4−(6γ−2)
5 , for e ≈ N and |p− ρq| ≤ Nγ

16
,

with lower dimension where γ ≤ 1
2

and 1 ≤ ρ ≤ 2.

Nitaj and Douh’s attack Lattice based techniques d = Md1 + d0, δ < 1
4
(5− 4γ −

√
12α + 12β − 12γ + 3),

for e = Nα, d1 < N δ and d0 < Nβ.

Table 3.3: Refinement process of RSA attack bounds on decryption exponent d.
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In the next section it is noted that these lattice attacks can be extended to

RSA-like cryptosystem on elliptic curves due to KMOV.

3.7 Extending Lattice-Based Attacks to an

RSA-Like Cryptosystem over E(Zpq)

All the lattice-based attacks on RSA for small decryption exponent may be extended

to RSA-like cryptosystem over elliptic curves E(Zpq) due to KMOV by repeating

the argument for ϕ(N) replaced by ψ(N) for ψ(N) = (p+ 1)(q + 1).

Lattice-based attack given by Boneh-Durfee and Blömer-May on RSA can be

extended to RSA-like cryptosystem over elliptic curves E(Zpq) due to KMOV, ac-

cording to the polynomial congruence as in the following

Boneh-Durfee and Blömer-May RSA RSA-like over E(Zpq)E(Zpq)E(Zpq)

due to KMOV

Polynomial Congruence x(A+ y)− 1 ≡ 0 mod e x(A+ y)− 1 ≡ 0 mod e

where A = N + 1. where A = N + 1.

Solution
(
− ed−1
ϕ(N)

,−(p+ q)
)

.
(
− ed−1
ψ(N)

, (p+ q)
)

.

note as the monomials and upper bounds for solutions are same for both the polyno-

mials with respect to ϕ(N) and ψ(N), the arguments of Boneh-Durfee and Blömer-

May can be repeated for ϕ(N) replaced by ψ(N) then it is observed that RSA and

RSA-like have same attack bound for δ, given as δ < 0.292 and δ < 0.29 respectively
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for d = N δ and e ≈ N .

Lattice-based attack given by B de Weger on RSA can be extended to RSA-like

cryptosystem over elliptic curves E(Zpq), according to the polynomial congruence

as in the following

Weger RSA RSA-like over E(Zpq)E(Zpq)E(Zpq)

due to KMOV

Polynomial Congruence x(A+ y)− 1 ≡ 0 mod e x(A+ y)− 1 ≡ 0 mod e

where A = N + 1− d2
√
Ne. where A = N + 1 + d2

√
Ne.

Solution
(
− ed−1
ϕ(N)

,−(p+ q − d2
√
Ne)

)
.
(
− ed−1
ψ(N)

, (p+ q − d2
√
Ne)

)
.

note as the monomials and upper bounds for solutions are same for both the poly-

nomials with respect to ϕ(N) and ψ(N), the argument of B de Weger can be re-

peated for ϕ(N) replaced by ψ(N) then it is observed that RSA and RSA-like

have same attack bounds for δ, given as δ < 1
6
(4β + 5) − 1

3

√
(4β + 5)(4β − 1) and

2− 4β < δ < 1−
√

2β − 1
2

for p− q = Nβ and d = N δ.

Lattice-based attack given by Maitra-Sarkar on RSA can be extended to RSA-like

cryptosystem over elliptic curves E(Zpq) due to KMOV, according to the polynomial

congruence as in the following
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Maitra-Sarkar RSA RSA-like over E(Zpq)E(Zpq)E(Zpq)

due to KMOV

Polynomial Congruence x(A+ y) + 1 ≡ 0 mod e x(A+ y) + 1 ≡ 0 mod e

where A = N + 1−
(√

ρ+ 1√
ρ

√
N
)

. where A = N + 1 +
(√

ρ+ 1√
ρ

√
N
)

.

Solution
(
ed−1
ϕ(N)

,−
(
p+ q −

(√
ρ+ 1√

ρ

√
N
)))

.
(
ed−1
ψ(N)

,
(
p+ q −

(√
ρ+ 1√

ρ

√
N
)))

.

note as the monomials and upper bounds for solutions are same for both the poly-

nomials with respect to ϕ(N) and ψ(N), the argument of Maitra-Sarkar can be

repeated for ϕ(N) replaced by ψ(N) then it is observed that RSA and RSA-like

have same attack bounds for δ, given as δ <
γ+3−2

√
γ(γ+3)

3
, 1− 2γ < δ < 1−√γ and

δ <

√
16γ2−4γ+4−(6γ−2)

5
for |p− ρq| ≤ Nγ

16
, where 1 ≤ ρ ≤ 2 and γ ≤ 1

2
.

Lattice-based attack given by Nitaj-Douh on RSA can be extended to RSA-like

cryptosystem over elliptic curves E(Zpq) due to KMOV, according to the polynomial

congruence as in the following

Nitaj-Douh RSA RSA-like over E(Zpq)E(Zpq)E(Zpq)

due to KMOV

Polynomial Congruence ex−Ny + yz − 1 ≡ 0 mod Me ex−Ny + yz − 1 ≡ 0 mod Me

where d = Md1 + d0. where d = Md1 + d0.

Solution (d0, k, p+ q − 1). (d0, k,−(p+ q + 1)).

note as the monomials and upper bounds for solutions are same for both the poly-

nomials with respect to ϕ(N) and ψ(N), the argument of Nitaj-Douh using the

strategy given by Jochemsz-May for finding roots of multivariate polynomials can

be repeated for ϕ(N) replaced by ψ(N), then it is observed that RSA and RSA-like
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have same attack bound for δ, given as δ < 1
4
(5− 4γ −

√
12α + 12β − 12γ + 3) for

d = N δ and for the decryption exponent is of the form d = Md1 + d0 with known

integer M and suitably small unknown integers d1 and d0.

3.8 Summary

In this chapter, attacks based on lattice-based techniques for RSA with small de-

cryption exponent are analyzed. M.J. Wiener used continued fraction algorithm to

find sufficiently short RSA secrete exponents in polynomial time for d < N0.25 and

when e > N1.5 as continued fraction algorithm is not guaranteed to work. Boneh-

Durfee attack is analyzed and noted that Boneh- Durfee proposed their work, as an

application of Coppersmith’s techniques to bivariate modular polynomial and their

approach is efficient as long as e < N1.875 and d < N0.292. Attack by J. Blömer and

A. May is analyzed and noted that J. Blömer and A. May proposed an algorithm

to find an attack on RSA for d < N0.29 and this bound for d is slightly worse than

Boneh- Durfee’s bound for d but this algorithm was several times faster due to the

reduced lattice dimension. After that attack by Benne de Weger is analyzed and

noted that B de Weger shown that choosing an RSA modulus with a small difference

p− q of its prime factors yields improvements on the small private exponent attacks

of Wiener and Boneh-Durfee. Next refinement by Subhamoy Maitra and Santanu

Sarkar is analyzed and noted that Maitra-Sarkar considered the difference p−ρq, for

ρq a better approximation for p instead of considering the prime difference p−q and

gave an attack bound for d. Further analyzed the attack by A.Nitaj and M.O.Douh.

It is observed that the method given by A.Nitaj and M.O.Douh, enables us to find

the private exponent d even when d > N0.292 depending on the possibility that d
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has the composed form d = Md1 + d0 for a suitable known integer M and suitable

unknown parameters d1 and d0. These results show that one should be more care-

ful when using RSA with small and special private exponent. It is observed that

all the lattice based attacks on RSA discussed here can be extended to an RSA-

like cryptosystem over elliptic curves E(Zpq) due to KMOV and the corresponding

analysation is given.



Chapter 4

Cryptanalysis Based on Lattice-Based

Techniques, for RSA with Small

Multiplicative Inverse of (p− 1)(p− 1)(p− 1) or (q − 1)(q − 1)(q − 1)

Modulo eee

In this chapter, we mount an attack on RSA by using lattice based techniques

implemented in the case when p − 1 or q − 1 have small multiplicative inverse less

than or equal to N δ modulo the public encryption exponent e, for some small δ and

described the attack bounds for δ. Also we noted that all these Lattice-based attacks

on RSA can be extended to the RSA-like cryptosystem over E(Zpq) due to KMOV.

4.1 Cryptanalysis of RSA and an Attack Bound

Using Lattice Based Techniques

In this section we describe how a small multiplicative inverse of (p − 1) or (q − 1)

modulo e results a new weakness for RSA by using the lattice reduction techniques
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as in [5] by Boneh-Durfee and in [3] by Blömer-May.

Let N = pq, q < p < 2q, e be the public encryption exponent and d be the private

decryption exponent. The public encryption exponent e and ϕ(N) are relatively

prime so for e > p− 1 there exist unique r, s such that

(p− 1)r ≡ 1 mod e and (q − 1)s ≡ 1 mod e (4.1.1)

and note r, s are the multiplicative inverses of p − 1, q − 1 respectively. Now let

f(x, y) = x(y + A) − 1 for A =
⌈√

N
⌉
− 1. If x0 = r then for y0 = p −

⌈√
N
⌉

we have f(x0, y0) ≡ 0 mod e and if x0 = s then for y0 = q −
⌈√

N
⌉

we have

f(x0, y0) ≡ 0 mod e by using (4.1.1). Now for |x0| ≤ N δ, |y0| ≤ Nγ for some δ and γ

note Nγ = |ρ−1|
√
N, 1 < ρ <

√
2 if y0 = p−

⌈√
N
⌉

and Nγ = |ρ−1|
√
N, 1√

2
< ρ < 1

if y0 = q −
⌈√

N
⌉

by using the inequality
√

2
√
N

2
< q <

√
N < p <

√
2
√
N in [34]

(observe that p −
⌈√

N
⌉

mod e ≤ p −
⌈√

N
⌉
,
⌈√

N
⌉
− q mod e ≤

⌈√
N
⌉
− q and

(r, p−
⌈√

N
⌉

mod e) and (s,−(
⌈√

N
⌉
− q) mod e) are also solutions but in this case

p−
⌈√

N
⌉

mod e = p−
⌈√

N
⌉

and
⌈√

N
⌉
− q mod e =

⌈√
N
⌉
− q as e > p− 1).

Now we consider the polynomial f(x, y) = x(y +A)− 1 and find (x0, y0) satisfying:

f(x0, y0) ≡ 0 mod e, for e = Nα, |x0| ≤ N δ and |y0| ≤ Nγ, with

Nγ = |ρ− 1|
√
N such that ρ is in the range

1√
2
< ρ < 1, if x0 = s, y0 = q −

⌈√
N
⌉

1 < ρ <
√

2, if x0 = r, y0 = p−
⌈√

N
⌉
.

To solve for the above (x0, y0) we use lattice based techniques to our polynomial

and the upper bounds X = N δ, Y = Nγ as in [5]:
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For given a positive integer m, define the polynomials

gi,k = xifk(x, y)em−k and

hj,k = yjfk(x, y)em−k,

referred as the x-shifts and y-shifts respectively. Now define the lattice L spanned

by the coefficients of the vectors gi,k(xX, yY ) and hj,k(xX, yY ) for k = 0, ...,m,

i = 0, ...,m − k and j = 0, ..., t. Note that the matrix M of L is lower triangular

and the coefficient of the leading monomial of gi,k(xX, yY ) is X i+kY kem−k and

also the coefficient of the leading monomial of hi,k(xX, yY ) is XkY j+kem−k, so the

determinant is

det(L) = eneXnXY nY

where

ne =
m∑
k=0

m−k∑
i=0

(m− k) +
m∑
k=0

t∑
j=1

(m− k)

=
m(m+ 1)(m+ 2)

3
+
tm(m+ 1)

2
,

nX =
m∑
k=0

m−k∑
i=0

(i+ k) +
m∑
k=0

t∑
j=1

k

=
m(m+ 1)(m+ 2)

3
+
tm(m+ 1)

2
,

nY =
m∑
k=0

m−k∑
i=0

k +
m∑
k=0

t∑
j=1

(j + k)

=
m(m+ 1)(m+ 2)

6
+
t(m+ 1)(m+ t+ 1)

2
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and the dimension of L is

w =
m∑
k=0

m−k∑
i=0

1 +
m∑
k=0

t∑
j=1

1

=
(m+ 1)(m+ 2)

2
+ t(m+ 1).

Applying the LLL algorithm we can obtain two short vectors b1, b2 and by using

Theorem 1.7.23 & 1.7.24 this vectors satisfies

‖ b1 ‖, ‖ b2 ‖≤ 2w/2det(L)
1

w−1 .

Now in order to apply Howgrave-Graham’s theorem, we should have

2
w
2 det(L)

1
w−1 <

em√
w
.

From this, we deduce

det(L) <
1

(2
w
2 )w−1

em(w−1) < emw

To satisfy the above inequality we need the following inequality

eneXnXY nY < emw.

Substitute all values and taking logarithms, neglecting the low order terms and after

simplifying we get

m3

(
2α + 2δ + γ

6

)
+ tm2

(
α + δ + γ

2

)
+mt2

(γ
2

)
< α

(
1

2
m3 + tm2

)



79

This leads to

m2

(
−α + 2δ + γ

6

)
+ tm

(
γ + δ − α

2

)
+ t2

(γ
2

)
< 0.

After fixing an m, the left hand side is minimized at t = α−δ−γ
2γ

m. Putting this value

we get the inequality

δ <
3α + γ − 2

√
γ(3α + γ)

3
.

From the vectors b1 and b2 we obtain two polynomials g1(x, y) and g2(x, y) over

Z such that g1(x0, y0) = g2(x0, y0) = 0. Let h(x) be the resultant polynomial of

g1(x, y) and g2(x, y) with respect to y. By Remark 1.3.34, h(x) is not identically

zero. Now note if r or s are small such that |s| or |r| ≤ N δ for δ <
3α+γ−2

√
γ(3α+γ)

3

then (r, p −
⌈√

N
⌉
) or (s, q −

⌈√
N
⌉
) are also common solutions of g1(x, y) and

g2(x, y), therefore either y0 = p−
⌈√

N
⌉

or y0 = q −
⌈√

N
⌉

is a root of g1(x0, y) for

x0 = r or s, a solution for h(x) and with this knowledge of y0 the factorization of

N is known.

Theorem 4.1.1. Let N = pq be an RSA modulus with q < p < 2q. Let e = Nα,

X = N δ and Y = Nγ, Nγ = |ρ− 1|
√
N where ρ in the range

1 < ρ <
√

2, if x0 = r, y0 = p−
⌈√

N
⌉

1√
2
< ρ < 1, if x0 = s, y0 = q −

⌈√
N
⌉
,

and r, s are the multiplicative inverses

of p− 1, q − 1 modulo e respectively. Suppose that |x0| ≤ X and |y0| ≤ Y then one

can factor N in polynomial time if

δ <
3α + γ − 2

√
γ(3α + γ)

3
.

Proof. Follows from the above argument and the LLL lattice basis reduction algo-
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rithm operates in polynomial time [29]. �

Corollary 4.1.2. If the lattice basis reduction algorithm is implemented only using

x-shifts and repeating the above argument then we can factorize N whenever

δ <
α− γ

2
.

Note that this RSA attack does not depend on the private decryption expo-

nent d. Sometimes our attack may work if d is exceeding the bound given by

Boneh and Durfee. For a given e = Nα and for d = N δ′ , p − q = Nβ, the

prime difference, the Boneh-Durfee’s bound for δ′(in the first result) is given by

δ′< 5
6

+ 2
3
β − 1

3

√
8(3α− 1)β + 16β2 − 6α + 1. Therefore the Boneh-Durfee’s bound

for d = N δ′ for a given α, β in example 4.1.3 is such that δ′ < 0.5029 but note that in

this example d = N δ′ ≈ N0.996307 exceeding the bound given by Boneh and Durfee.

4.1.1 Refined Attack Bound Using Sub-Lattice Based

Techniques

Boneh and Durfee [5] improved their result by using sub-lattice techniques. Now we

implement their idea to our polynomial for improving the result.

Let My be the portion of the matrix M with rows corresponding to the y-shifts

hl,k and columns corresponding to variable of the form xuyv, v > u and take the pa-

rameter t as twice the value of t in the above lattice based technique i.e., t = α−δ−γ
γ

m.

Define the matrix M1 as follows: Take every row gi,k of M corresponding to the
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x-shifts and take only those rows hl,k of M corresponding to the y-shifts whose

diagonal entry is less than or equal to em. Let L1 be a lattice described by M1.

Then L1 is a sublattice of L, so short vector of L1 will be in L. Now perform the

Gaussian elimination to the first (m+ 1)(m+ 2)/2 rows of M that is the those rows

corresponding to the x-shifts to set the off-diagonal entries of every row to zero, then

there is a unitary matrix A over R such that M2 = AM1 is a matrix whose upper

left block ∆ is a diagonal matrix of order (m + 1)(m + 2)/2, lower right block M ′
y

consists selected rows of My and remaining upper right block and lower left block of

M2 are zero blocks. Since A is unitary, the determinant of the lattice L2 described

by M2 is equal to det(L1) and the det(L2)=det(∆) · det(L′y) where L′y be the lattice

induced by M ′
y.

Let w′ be the dimension of L′y. First we compute w′ by setting S = {(k, l) ∈

{0, ...,m} × {1, ..., t}|M(k, l, k, l) ≤ em} and then w′ = |S|. The matrix My is

a geometrically progressive matrix with parameter choice (m2m, N, αm, δ + γ, γ −

1,−α, 1, b) for some b. Note that the first three conditions of Definition 1 hold. To

satisfy the fourth condition, the parameter b should satisfy b(δ + γ) − α ≥ 0 and

b(γ − 1) + 1 ≥ 0 together and thus we get the constraint δ > α− γ(1 +α), which in

turn gives a possible value of b as b = 1
1−γ . We have My(k, l, k, l) = Nαm+(δ−α+γ)k+γl

for k = 0, ...,m and l = 1, ..., t. Since (k, l) ∈ S only if Nαm+(δ−α+γ)k+γl < Nαm, so

for l ≤ α−δ−γ
γ

k we get this inequality. Thus

w′ = |S| =
m∑
k=0

⌊α− δ − γ
γ

k
⌋

=
α− δ − γ

2γ
m2 + o(m2)
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and the dimension of the lattice L2 is

w =
(m+ 1)(m+ 2)

2
+ w′ =

(
1

2
+
α− δ − γ

2γ

)
m2 + o(m2).

Since the lattice L′y defined by the rows (k, l) ∈ S of My and by Theorem 1.3.36

we have

detL′y ≤
(

(m+ 1)
⌊α− δ − γ

γ

⌋
m

)w′
2

(1 +m2m)(w′)2
∏

(k,l)∈S

My(k, l, k, l).

As
(

(m+ 1)
⌊
α−δ−γ

γ

⌋
m
)w′

2
(1 + m2m)(w′)2 is a function of only δ(but not of N) and

∏
(k,l)∈S

My(k, l, k, l) =
m∏
k=0

⌊
α−δ−γ

γ
k
⌋∏

l=0

Nαm+(δ−α+γ)k+γl, we have

detL′y = N

(
2α2−αγ−γ2−(α+2γ)δ−δ2

6γ

)
m3+o(m3)

.

Now as det(∆) = eneXnXY nY pertaining to just x-shifts, repeating the argument as

in the above lattice based strategy we have det(∆) = N( 2α+2δ+γ
6 )m3+o(m2), so then

the condition det(L1)=det(∆)·det(L′y) < emw gives the bound

δ < α−√αγ.

Theorem 4.1.3. Let N, p, q, e,X, Y, x0, y0, δ, γ and ρ be defined in Theorem 4.1.1

Suppose that |x0| ≤ X and |y0| ≤ Y , then RSA is insecure if

α− γ(1 + α) < δ < α−√αγ.
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Proof. Follows from the above argument and the LLL lattice basis reduction algo-

rithm operates in polynomial time [29]. �

Now we follow the idea of Blömer-May in [3] using sub-lattice techniques and

this approach does not improve the above bound for δ and also slightly less than

to this bound but this method requires lattice of smaller dimension than the above

approach.

Theorem 4.1.4. Let N, p, q, e,X, Y, x0, y0, δ, γ and ρ be defined in Theorem 4.1.1

Suppose that |x0| ≤ X and |y0| ≤ Y , then RSA is insecure if

δ <
2α− 6γ + 2

√
α2 − αγ + 4γ2

5
.

Proof. This proof is similar to the above argument but determinant of lattice will

be different here.

Unlike the above remove the some rows corresponding to the both x-shifts and y-

shifts of M in order to obtain a square matrix and to apply Howgrave’s theorem

by following the same idea of Blömer-May in [3] and denote the final constructed

matrix by MB and corresponding lattice LB.

So the new lattice MB formed by removing the row vectors corresponding to the

x−shift polynomials gi,k(xX, yY ) if i+k = 0, 1, ...,m− t−1, the y-shift polynomials
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hj,k(xX, yY ) if k =



0, ...,m− t if j = 1

0, ...,m− t+ 1 if j = 2

...

0, ...,m− 2 if j = t− 1

0, ...,m− 1 if j = t

and remove columns in order to

form a lower triangular square matrix.

Then the dimension of the lattice LB = (m+ 1)(t+ 1) and the diagonal elements of

the matrix MB will be

Xmem, XmY em−1, ..., XmY m,

Xm−1em, Xm−1Y em−1, ..., Xm−1Y m−1e,

...,

Xm−tem, Xm−tY em−1, ..., Xm−tY m−tet (for x-shifts) and

XmY m+t,

XmY m+t−1, Xm−1Y m+t−2e,

...,

XmY m+1, Xm−1Y me, ..., Xm−t+1Y m−t+2et−1 (for y−shifts).

Multiplying the diagonal elements and neglecting the lower order terms, we need

the condition

X tm2−mt
2

2
+ t3

6 Y
tm2

2
+ t3

6 < e
tm2

2 .

Putting the values of e = Nα, X = N δ, Y = Nγ and t = τm, we have the required

condition (
δ

6
+
γ

6

)
τ 2 − 1

2
δτ +

(
δ +

γ

2
− α

2

)
< 0.
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The left hand side is minimized at the value τ = δ
2
3

(δ+γ)
. Putting this value of τ in

the previous inequality we get the bound for δ is

δ <
2α− 6γ + 2

√
α2 − αγ + 4γ2

5
.

�

4.1.2 Analysis of Attack Bounds

As it is known that, for p− q < N
1
4 , then RSA is insecure by Fermat’s Factorization

technique, in this section we first analyze all the above attack bounds on δ in the

range N
1
4 < p − q < N

1
2√
2

. We proposed by denoting the δ obtained using both x

and y shifts as in Theorem(4.1.1) by δx,y, the δ obtained using only x−shifts as

in Corollary(4.1.2) by δx, the δ obtained using sublattice based techniques as in

Theorem(4.1.4) by δs and the δ obtained using sublattice based techniques with

lower dimension as in Theorem(4.1.5) by δsd . Let p − q = Nβ for 1
4
< β < 1

2
, then

we have p −
⌈√

N
⌉
,
⌈√

N
⌉
− q < Nβ as q <

⌈√
N
⌉
< p. As y0 = q −

⌈√
N
⌉

or

p−
⌈√

N
⌉
, we may take Y = Nβ, 1

4
< β < 1

2
and for Y = Nβ the attack bound for

δ in the above results are given as:

δx <
α− β

2
for any m ≥ 1. (4.1.2)

δx,y <
3α + β − 2

√
β(3α + β)

3
for t =

α− δ − β
2β

m. (4.1.3)

α− β(1 + α) < δs < α−
√
αβ for t =

α− δ − β
β

m. (4.1.4)
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δsd <
2α− 6β + 2

√
α2 − αβ + 4β2

5
for t =

δ
2
3
(δ + β)

m. (4.1.5)

In Table 4.1, we represent how the bound for δ increase when the prime difference

Nβ is decreasing from N
1
2 to N

1
4 for a given public key exponent e = Nα in the all

above cases (4.1.2),(4.1.3),(4.1.4) and (4.1.5).
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ααα βββ δδδ

δx < δx,y < δs < δsd <

0.501 ≈ 0.50 0.0005 0.0005001873 (0, 0.0005002497) 0.0005001874

0.45 0.0255 0.0260200003 (0, 0.0261842462) 0.0260339152

0.40 0.0505 0.0526881570 (0, 0.0533394142) 0.0528096268

0.35 0.0755 0.0807826527 (0, 0.0822518656) 0.0812390932

0.30 0.1005 0.1106939731 (0.0570000001, 0.1133145605) 0.1118998342

0.26 0.1205 0.1363082232 (0.1174, 0.1400844974) 0.1385650655

0.55 ≈0.50 0.025 0.0254519548 (0, 0.0255955759) 0.0254626986

0.45 0.05 0.0519259301 (0, 0.0525062814) 0.0520215047

0.40 0.075 0.0796409907 (0, 0.0809584240) 0.0800000000

0.35 0.1 0.1088933156 (0.0075000001, 0.1112517806) 0.1098386676

0.30 0.125 0.1400980486 (0.0850000001, 0.1437980797) 0.1421347195

0.26 0.145 0.1668676552 (0.147, 0.1718465919) 0.1702670394

0.75 ≈0.50 0.125 0.1349307066 (0, 0.1376275643) 0.1358898943

0.45 0.15 0.1651530771 (0, 0.1690524980) 0.1669397989

0.40 0.175 0.1969579906 (0.0499999999, 0.2022774424) 0.2

0.35 0.2 0.2307071990 (0.1375, 0.2376524617) 0.2355277766

0.30 0.225 0.2669048105 (0.225, 0.2756583509) 0.2740658617

0.26 0.245 0.2981089219 (0.295, 0.3084119566) 0.3074745686

1 ≈0.50 0.25 0.2847495629 (0, 0.2928932188) 0.2898979485

0.45 0.275 0.3193376137 (0.1, 0.3291796067) 0.3264761515

0.40 0.3 0.3558730806 (0.2, 0.3675444679) 0.3654211490

0.35 0.325 0.3947864057 (0.3, 0.4083920216) 0.4070831300

0.30 0.35 0.4366750419 (0.4, 0.4522774424) 0.4518252056

0.26 0.37 0.4728987047 (0.48, 0.4900980486) 0.4900746199

Table 4.1: Bound for δ corresponding to the values of α and β in all cases.
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In Figure 4.1 we plot the bounds for δs, δsd , δx,y and δx for a given e in different

values of β i.e., β = 0.5, 0.45, 0.35 and 0.26. Within that bounds the RSA cryp-

tosystem is insecure and note that the region for which RSA is insecure increases

when the value of β decreases.

Figure 4.1: The region for δ and α values for which RSA is insecure for different
values of β
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From the above observations it is noted for a given α if δ is beyond the upper

bound δs then the RSA is secure with respect to all the above attacks and if δ is

within the bound for δx and beyond the lower bound for δs then RSA is insecure

with respect to all the the above attacks and for any δ within any of the four attack

bounds corresponding attack may be implemented. Further it is also observed that

δ always lies beyond the attack bounds for certain values of the public encryption

exponent e and such inefficient lower bound of e for each attack related to the prime

difference are listed in Table 4.2 for e = Nα and L(α), denoting the lower bound for

inefficient e for the above attacks using lattice based techniques.

NNN βββ L(α)L(α)L(α)

(≈≈≈) Attack with Attack with Attack with Attack with sublattice

xxx-shifts xxx and yyy shifts sublattice based techniques

based techniques with lower dimension

1000 bits 0.50 0.5025 0.5025 0.5025 0.5025

0.45 0.5520 0.5560 0.5600 0.5570

0.35 0.66 0.71 0.72 0.7130

0.26 0.75 0.9120 0.9675 0.9670

2000 bits 0.50 0.5013 0.5013 0.5013 0.5013

0.45 0.5510 0.5550 0.5590 0.5560

0.35 0.6520 0.70 0.72 0.71

0.26 0.7450 0.91 0.9645 0.9640

4000 bits 0.50 0.5010 0.5010 0.5010 0.5010

0.45 0.5505 0.5545 0.5570 0.5550

0.35 0.6510 0.6990 0.7160 0.7095

0.26 0.7410 0.9090 0.9640 0.9435

Table 4.2: List of L(α) corresponding to β and no.of bits in N .
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In such cases we proceed to improve the attack bounds for δ so that the inefficient

e may turn efficient for the attacks with lattice based techniques by considering the

same polynomial congruence with N replaced by ρN or N
ρ

for some appropriate ρ,

1 ≤ ρ ≤ 2 such that ρq ≈ p and is based on the following Theorem.

Theorem 4.1.5. Let |p − ρq| ≤ Nγ′ where γ′ < 1
2

and 1 ≤ ρ ≤ 2. Then we have

|p−
√
ρN |, |q −

√
N
ρ
| < Nγ′ [30].

To improve the bound for δ, we consider the polynomial congruence f(x, y) ≡

0 mod e in which the upper bound Nγ′ for the solution y = y0 is depending on the

value |p−ρq|, rather then the prime difference p− q for f(x, y) = x(y+A)−1, with

A =


⌈√

ρN
⌉
− 1, if min{r, s} = r⌈√

N
ρ

⌉
− 1, if min{r, s} = s.

Then the solutions x = x0 and y = y0 for the polynomial congruence f(x, y) ≡ x(y+

A)−1 mod e are given as x0 = min{r, s} and y0 =


p−

⌈√
ρN
⌉
, if min{r, s} = r

q −
⌈√

N
ρ

⌉
, if min{r, s} = s.

In [42], it has been studied how a few MSBs of p or q can be found from the

knowledge of N only, where N = pq, p and q are primes of same size and this

knowledge of most significant bits(MSBs) of p or q can provide approximation of

ρ. Otherwise one may try to guess ρ for different values (that are computationally

feasible) to mount the attack. To mount the attack we establish the attack bounds

for δ by repeating the argument for |x0| ≤ N δ and |y0| ≤ Nγ′ , γ′ ≤ 1
2

in Corollary

4.1.2, Theorem 4.1.1, Theorem 4.1.4 and Theorem 4.1.5. Note for the above attack

bounds thus obtained depending on appropriate ρ.

Example 4.1.6. Let p=202578011750906281247094079898482654152352800202967795174672010161491336804628653

58574779284875457806030124268550700030014115264772567435253175260469958709084217 and
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q=106620006184687516445838989420254028501238315896298839565616847453416493055067712

41355146992039714634752696983447736857902165928827667136006663483150507256156183

be two 533 and 532 bit integer primes respectively with q < p < 2q.

Then N=215988688657633280888137261514522896004197165983041322871302383040220579435985189458249347389135513014

66581746670813928474835987795 78805377405134605780218613554771847080564776236921530596976503056680174210821867015751

8254139618999751340345127999866829966392864624231228730005 5328685941416182541762052991358334639452263711.

For the public encryption exponent e=203570487608519177130387858346335949982681274302465056311222282

65727831120341504227605379168525 574184831255713809622106188803980126100142376033417564441502906816081028618399597927

513832190649042334179538898854354716330533894180986228498033 07996837184668882334422884965338353654061812322328244014

873765, the multiplicative inverses of p−1 and q−1 modulo e are r=158632059222900190064040197

82584099034358123662465732469953170767501769225883755689521518192482725595496589763798408382380531132272292363326 287

32137867246713845703554488416968391320841470705716962245803211633386377136888877661949911543059259693132107562595887

0066127685434042170604888 47920706636452261,

s=745823645745560047400757447700005723876746573657571523716437596174571647385613746587436756732657136495761847356

71436756173564375674365716349 705193 respectively and e ≈ N0.937484971166478.

Taking ρ = 1.9, we get |p − ρq| = N0.0814475914542542436619469358. For γ′ ≈ 0.082, the

bound for δ corresponds to the results given in Corollary 4.1.2 and Theorems 5 &

7 are 0.428018689856112, 0.640973585517601 and 0.641467151800484 respectively

and note the solution x = x0 = s ≈ N0.455376075838353 is exceeding the bound given

in Corollary 4.1.2(The method given in the Theorem 4.1.4 is not applicable in this

case as we have α − γ(1 + α) < α − √αγ only if
√
γ 1+

√
α√
α

> 1, but in this case

√
γ 1+

√
α√
α

< 1). By using the lattice parameters m = 3 and t = 1 we can factor

the RSA modulus N in both cases corresponding to the Theorems 4.1.1 & 4.1.5. If

|y0| = |q −
⌈√

N
ρ

⌉
|, then for the polynomial congruence x(y + A) − 1 ≡ 1 mod e,
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where A =
⌈√

N
ρ

⌉
− 1 and for β ≈ 0.49942206, the solution x = x0 is exceeding the

bound given in (4.1.2),(4.1.3),(4.1.4) and (4.1.5).

The refinement process of RSA attack bounds on δ for N δ, an upper bound for

min{(p− 1)−1 mod e, (q− 1)−1 mod e} using lattice-based techniques is given in the

following table.

Lattice based attack Attack bound Attack bound

when p− qp− qp− q is bounded when p− ρqp− ρqp− ρq is bounded

Attack with x−shifts (α− β)/2 (α− γ′)/2

Attack with x and y shifts (3α + β − 2
√
β(3α + β))/3 (3α + γ′ − 2

√
γ′(3α + γ′))/3

Attack with sublattice α− β(1 + α) < δ < α−
√
αβ α− γ′(1 + α) < δ < α−

√
αγ′

based techniques

Attack with sublattice (2α− 6β + 2
√
α2 − αβ + 4β2)/5 (2α− 6γ′ + 2

√
α2 − αγ′ + 4γ′2)/5

based techniques

with lower dimension

Table 4.3: Refinement process of RSA attack bounds on δ for N δ, an upper bound for
min{(p− 1)−1 mod e, (q − 1)−1 mod e}.

4.2 Extending Lattice-Based Attacks to an

RSA-Like Cryptosystem over E(Zpq)

All the lattice-based attacks on RSA for small multiplicative inverse of p−1 or q−1

modulo e may be extended to RSA-like cryptosystem over elliptic curves E(Zpq) due

to KMOV by repeating the argument for ϕ(N) replaced by ψ(N) = (p+ 1)(q + 1).
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The above lattice-based attacks on RSA for p − q bounded can be extended to

RSA-like cryptosystem over elliptic curves E(Zpq) due to KMOV, according to the

polynomial congruence as in the following

When p− qp− qp− q is bounded RSA RSA-like over E(Zpq)E(Zpq)E(Zpq)

due to KMOV

Polynomial Congruence x(A+ y)− 1 ≡ 0 mod e x(A+ y)− 1 ≡ 0 mod e

where A = dNe − 1. where A = dNe+ 1.

Solutions
(
r, p− d

√
Ne
)

and
(
s, q − d

√
Ne
) (

r, p− d
√
Ne
)

and
(
s, q − d

√
Ne
)

where r = (p− 1)−1 mod e where r = (p+ 1)−1 mod e

and s = (q − 1)−1 mod e. and s = (q + 1)−1 mod e.

note as the monomials are same for both the polynomials with respect to ϕ(N)

and ψ(N), the arguments of our results when p − q is bounded can be repeated

for ϕ(N) replaced by ψ(N) then it is observed that RSA and RSA-like have same

attack bounds for δ, given as:

δ <
α− β

2
,

δ <
3α + β − 2

√
β(3α + β)

3
,

α− β(1 + α) < δ < α−
√
αβ and

δ <
2α− 6β + 2

√
α2 − αβ + 4β2

5

for p− q = Nβ and N δ is an upper bound for min{(p−1)−1 mod e, (q−1)−1 mod e}

and min{(p+ 1)−1 mod e, (q+ 1)−1 mod e} in RSA and RSA-like cryptosystem over

elliptic curves E(Zpq) due to KMOV respectively.
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The lattice-based attacks on RSA for p−ρq bounded, ρq a better approximation

for p can be extended to RSA-like cryptosystem over elliptic curves E(Zpq) due to

KMOV, according to the polynomial congruence as in the following

When p− ρqp− ρqp− ρq is bounded RSA RSA-like over E(Zpq)E(Zpq)E(Zpq)

due to KMOV

Polynomial Congruence x(A+ y)− 1 ≡ 0 mod e x(A+ y)− 1 ≡ 0 mod e

where A = d
√
ρNe − 1 if min{r, s} = r where A = d

√
ρNe+ 1 if min{r, s} = r

and A =
⌈√

N
ρ

⌉
− 1 if min{r, s} = s. and

⌈√
N
ρ

⌉
+ 1 if min{r, s} = s.

Solutions
(
r, p− d

√
ρNe

)
if A = d

√
ρNe − 1

(
r, p− d

√
ρNe

)
if A = d

√
ρNe+ 1

and (s, q −
⌈√

N
ρ

⌉
) if A =

⌈√
N
ρ

⌉
− 1. and (s, q −

⌈√
N
ρ

⌉
) if A =

⌈√
N
ρ

⌉
+ 1.

note as the monomials are same for both the polynomials with respect to ϕ(N)

and ψ(N), the arguments of our results when p − ρq is bounded can be repeated

for ϕ(N) replaced by ψ(N) then it is observed that RSA and RSA-like have same

attack bounds for δ, given as:

δ <
α− γ′

2
,

δ <
3α + γ′ − 2

√
γ′(3α + γ′)

3
,

α− γ′(1 + α) < δ < α−
√
αγ′ and

δ <
2α− 6γ′ + 2

√
α2 − αγ′ + 4γ′2

5

for |p− ρq| ≤ Nγ′ ,γ′ < 1
2
, 1 ≤ ρ ≤ 2 and N δ ia an upper bound for min{r, s}.
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4.3 Summary

In this chapter it is shown that RSA is insecure if the multiplicative inverse of p−1 or

q− 1 modulo the public encryption exponent e is small, that is less than or equal to

N δ, for some small δ. This is established by using the lattice based techniques imple-

mented by the polynomial congruence f(x, y) ≡ 0 mod e for f(x, y) = x(y +A)− 1

with A =
⌈√

N
⌉
− 1. Lattice based techniques were implemented first using both

x and y shifts then implemented using only x-shifts. These were also implemented

using sublattice based techniques and sublattice based techniques with lower dimen-

sion and in each of the above implementation for δ denoted as δx,y, δx, δs and δsd

respectively, the attack bounds were described. An analysis of these bounds with

respect to the prime difference p− q, for p− q = Nβ and with respect to p− ρq, for

ρ such that ρq is a better approximation for p are also described. It is observed that

these lattice-based attacks on RSA for small multiplicative inverse of (p−1)−1 mod e

or (q − 1)−1 mod e can be extended to the RSA-like cryptosystem over E(Zpq) due

to KMOV and the corresponding analysation is given.



Chapter 5

Cryptanalysis Based on Lattice-Based

Techniques, for RSA with Small

Multiplicative Inverse of ϕ(N)ϕ(N)ϕ(N) Modulo eee

and with a Composed Prime Sum p + qp + qp + q

In this chapter, we mount an attack on RSA when ϕ(N) has small multiplicative

inverse k modulo e, the public encryption exponent. For k ≤ N δ, the attack bounds

for δ are described by using lattice based techniques. The bound for δ depends on

the prime difference p−q = Nβ and the maximum bound for δ is α−
√

α
2

for e = Nα

and for β ≈ 0.5. If the prime sum p + q is of the form p + q = 2nk0 + k1 where n

is a given positive integer and k0 and k1 are two suitably small unknown integers

then the maximum bound for δ is improved for β ≈ 0.5. Also we gave a new attack

bound for the deciphering exponent d with above composed prime sum and compare

it to Boneh and Durfee’s bound. Further noted that all these Lattice-based attacks

on RSA can be extended to the RSA-like cryptosystem over E(Zpq) due to KMOV.
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5.1 Attack Bounds for RSA Using Lattice Based

Techniques Based on Finding Small Modular

Roots of Bivariate Polynomials

In our paper [19] and in chapter 4, we described an attack on RSA by using lattice

based techniques implemented in the case when p−1 or q−1 have small multiplica-

tive inverse less than or equal to N δ modulo the public encryption exponent e, for

some small δ and for q < p < 2q, e = Nα > p− 1.

Let f(x, y) = x(y + A) − 1 where A =
⌈√

N
⌉
− 1 and r, s be the multi-

plicative inverses of p − 1, q − 1 modulo the private encryption exponent e re-

spectively. For x0 = min{r, s} and y0 =


p−

⌈√
N
⌉

if min{r, s} = r

q −
⌈√

N
⌉

if min{r, s} = s,

the pair

(x0, y0) is a solution for the modular polynomial equation f(x, y) ≡ 0 mod e. For

|x0| ≤ N δ, |y0| ≤ Nγ, the attack bounds for δ are described in [19] by using lattice

reduction techniques in the direction of Boneh-Durfee [5] and Blömer-May [3] for

q < p < 2q and e = Nα > p− 1.

Applying the analysis described by Boneh-Durfee in [5] using x, y shifts and using

only x shifts to the above modular polynomial equation, we get the attack bounds

for δ as given in the following Theorem and Corollary [19] respectively.

Theorem 5.1.1. Let N = pq be an RSA modulus with q < p < 2q. Let e = Nα,

X = N δ, Y = Nγ and r, s are the multiplicative inverses of p − 1, q − 1 modulo

e respectively. Suppose that |x0| ≤ X and |y0| ≤ Y then one can factor N in
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polynomial time if

δ <
3α + γ − 2

√
γ(3α + γ)

3
.

Corollary 5.1.2. If the lattice basis reduction algorithm is implemented only using

x−shifts and repeating the above argument then we can factorize N whenever

δ <
α− γ

2
.

In [19] further, the bound given in the above theorem is improved by implement-

ing the ideas given by Boneh-Durfee[5] and Blömer-May[3] to the above modular

equation using sublattice based techniques as given in the following Theorems.

Theorem 5.1.3. Let N, p, q, e,X, Y, x0, y0, δ and γ be defined in Theorem 5.1.1.

Suppose that |x0| ≤ X and |y0| ≤ Y , then RSA is insecure if

α− γ(1 + α) < δ < α−√αγ.

Theorem 5.1.4. Let N, p, q, e,X, Y, x0, y0, δ and γ be defined in Theorem 5.1.1.

Suppose that |x0| ≤ X and |y0| ≤ Y , then RSA is insecure if

δ <
2α− 6γ + 2

√
α2 − αγ + 4γ2

5
.

The bound given in the Theorem 5.1.4 is slightly less than the bound(upper)

given in the Theorem 5.1.3 but the method used to obtain this bound requires

lattice of smaller dimension than the above.

Now in this section we first describe the attack bounds for RSA cryptosystem in

this section using the lattice based techniques based on the Coppersmith techniques
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[8] for finding small solutions of modular bivariate integer polynomial equations

following the idea of Boneh-Durfee[5] and Blömer-May[3], when ϕ(N) have some

small multiplicative inverse modulo e. Let N = pq, q < p < 2q, p − q = Nβ and

e = Nα > p+ q. As (e, ϕ(N)) = 1, there exist unique r, s such that

(p− 1)r ≡ 1 mod e and (q − 1)s ≡ 1 mod e.

Let k = rs mod e, then kϕ(N) ≡ 1 mod e, i.e., k is a multiplicative inverse of

ϕ(N) modulo e. For g(x, y) = x(y + B) − 1 where B = N + 1 −
⌈
2
√
N
⌉
, the

pair (x0, y0) = (k,−((p + q) −
⌈
2
√
N
⌉
)) is a solution for the modular polynomial

equation g(x, y) ≡ 0 mod e (in general (p+q)−
⌈
2
√
N
⌉

mod e ≤ (p+q)−
⌈
2
√
N
⌉

and

(k,−((p+q)−
⌈
2
√
N
⌉

mod e)) is also a solution but in this case (p+q)−
⌈
2
√
N
⌉

mod

e = (p+ q)−
⌈
2
√
N
⌉

as e > p+ q). Note as q <
√
N , p+ q −

⌈
2
√
N
⌉
< Nβ, hence

Nβ is an upper bound for y0. Now note as the monomials for the polynomial

gm where g(x, y)=x(y + N + 1 −
⌈
2
√
N
⌉
) − 1 and for the polynomial fm where

f(x, y)=x(y +
⌈√

N
⌉
− 1)− 1 described as in [19] are same for any positive integer

m, we have the same analysis as in [19] for the above given modular equation with

the multiplicative inverse k of ϕ(N) mod e bounded by N δ, we have |k| ≤ N δ and

for x0 = k, RSA is insecure under the following conditions:

δ <
3α + β − 2

√
β(3α + β)

3
; (5.1.1)

δ <
α− β

2
; (5.1.2)

α− β(1 + α) < δ < α−
√
αβ; (5.1.3)

δ <
2α− 6β + 2

√
α2 − αβ + 4β2

5
. (5.1.4)



100

Denoting the upper bounds for δ as in (5.1.1),(5.1.2),(5.1.3) and (5.1.4) by δ1, δ2, δ3

and δ4 respectively, we have the bound for δ corresponding to α and β as given in

Table 5.1, depicting the refinement of the attack bounds in the following.

ααα βββ δδδ

(≈≈≈) δδδ1 δδδ2 δδδ3 δδδ4

0.501 0.50 0.0005 0.0005001873 0.0005002497 0.0005001874

0.55 0.50 0.025 0.0254519548 0.0255955759 0.0254626986

0.75 0.50 0.125 0.1349307066 0.1376275643 0.1358898943

1 0.50 0.25 0.2847495629 0.2928932188 0.2898979485

Table 5.1: Bounds for δ corresponding to certain values of α and β ≈ 0.5 depicting
the refinement.

By the analysis as in [19] note in all the above cases the maximum upper

bound for δ is the bound as in (5.1.3), it is α −
√

α
2

for β ≈ 0.5 and for α =

0.501, 0.55, 0.75, 1, the value δ3 = α−
√

α
2
≈ 0.000501, 0.0254627, 0.135890, 0.289898

respectively are the bounds for δ. Note the arguments above are considered for small

multiplicative inverse of ϕ(N) mod e.

Note when either (p− 1) mod e or (q− 1) mod e has small inverse we may adapt

the attack as in [19] but when both (p−1) mod e and (q−1) mod e do not have small

inverses the ϕ(N) mod e may have small inverse as in Table 5.2 then this modified

attack proposed in the following may be used.
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eee ϕ(N)−1 mod eϕ(N)−1 mod eϕ(N)−1 mod e (p− 1)−1 mod e(p− 1)−1 mod e(p− 1)−1 mod e (q − 1)−1 mod e(q − 1)−1 mod e(q − 1)−1 mod e eee ϕ(N)−1 mod eϕ(N)−1 mod eϕ(N)−1 mod e (p− 1)−1 mod e(p− 1)−1 mod e(p− 1)−1 mod e (q − 1)−1 mod e(q − 1)−1 mod e(q − 1)−1 mod e

1 0 0 0 97 48 91 89

5 3 1 3 101 10 19 59

7 5 4 3 103 22 58 43

11 9 9 1 107 34 87 9

13 4 9 12 109 88 75 100

17 7 16 10 113 103 106 66

19 10 6 8 115 3* 36 48

23 3 13 2 119 75 67 10

25 3* 11 23 121 75 53 111

29 21 20 17 125 28 86 73

31 26 2 13 127 43 8 53

35 33 11 3 131 58 41 11

37 16 7 34 133 124 25 122

41 22 18 24 137 5* 21 60

43 28 35 18 139 113 80 58

47 12 3 4 143 108 9 12

49 12 46 45 145 108 136 133

53 45 10 31 149 52 28 87

55 53 31 23 151 70 85 63

59 4* 48 5 155 88 126 13

61 34 42 56 157 9* 108 144

65 43 61 38 161 26 151 94

67 52 21 28 163 45 51 68

71 27 40 6 167 147 94 14

73 27 32 67 169 147 74 155

77 75 53 45 173 82 119 101

79 7 5 33 175 103 11 73

83 16 26 7 179 124 56 15

85 58 16 78 181 33 34 166

89 70 39 52 185 53 81 108

91 82 74 38 187 75 152 78

95 48 6 8 191 1* 12 16

Table 5.2: Multiplicative inveres of ϕ(N), p− 1 and q − 1 modulo e for fixed
N = pq = 13 · 17.

* For all such ϕ(N)−1 mod e in the table, note ϕ(N)−1 mod e is small but (p−1)−1 mod e

and (q − 1)−1 mod e are not small.
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Now in the next section the attack bound for δ is further refined for β ≈ 0.5 by taking

the prime sum p+ q as a composed prime sum i.e., p+ q = 2nk0 + k1 where n is a known

positive integer, k0 and k1 are suitably small unknown integers and applying the lattice

based arguments for trivariate polynomials.

5.2 An Attack Bound for RSA Using Lattice

Based Techniques Based on Finding Small

Modular Roots of Trivariate Polynomials

In this section, the attack bound for RSA is described when the prime sum p + q is of

the form p+ q = 2nk0 + k1 with a known positive integer n and unknown integers k0 and

k1 using the lattice based techniques based on the E. Jochemsz and A. May’s extended

strategy [18] for finding small solutions of modular multivariate integer polynomial equa-

tions. In this method the bound for δ can be improved for a suitable known integer n and

suitable unknown parameters k0, k1 and for β ≈ 0.5.

Let p+ q = 2nk0 + k1 where n is a given positive integer and k0 and k1 are unknown

integers. First assume that |k0| ≤ |k1|. As k(N + 1− (p+ q)) ≡ 1 mod e for k = rs mod e,

the triple (x0, y0, z0) = (k,−k1,−k0) is a solution for the modular polynomial equation

f(x, y, z) ≡ 0 mod e for f(x, y, z) = (N + 1)x+xy+ (2n)xz−1 (observe that |k0| mod e =

|k0| and |k1| mod e = |k1| as e > p+ q).

To apply the generalization of Howgrave-Graham result to find the small modular roots

of the above equation f(x, y, z) ≡ 0 mod e, we use the extended strategy of Jochemsz and

May [18].
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Now define the set

Mk =
⋃

0≤j≤t
{xi1yi2zi3+t|xi1yi2zi3 is a monomial of fm and

xi1yi2zi3

lk
is a monomial of fm−k},

where l is a leading monomial of f and define the shift polynomials as

gk,i1,i2,i3(x, y, z) =
xi1yi2zi3

lk
(f ′(x, y, z))kem−k, for k = 0, ...,m, xi1yi2zi3 ∈Mk \Mk+1

and f ′ = a−1
l f mod e for the coefficient al of l. For f(x, y, z) = (N+1)x+xy+(2n)xz−1,

xi1yi2zi3 is a monomial of fm if i1 = 0, ...,m, i2 = 0, ..., i1, i3 = 0, ..., (i1 − i2) and xy

the leading monomial of f as |k0| ≤ |k1| with coefficient al = 1. Then for 0 ≤ k ≤ m,

xi1−kyi2−kzi3 is a monomial of fm−k if i1 = k, ...,m, i2 = k, ..., i1, i3 = 0, ..., (i1 − i2).

Therefore

xi1yi2zi3 ∈Mk if i1 = k, ...,m, i2 = k, ..., i1, i3 = 0, ..., (i1 − i2) + t

and xi1yi2zi3 ∈Mk+1 if i1 = k + 1, ...,m, i2 = k + 1, ..., i1, i3 = 0, ..., (i1 − i2) + t.

From this, we obtain for 0 ≤ k ≤ m,

xi1yi2zi3 ∈Mk \Mk+1 if i1 = k, i2 = k, i3 = 0, ..., t and

if i1 = k + 1, ...,m, i2 = k, i3 = 0, ..., (i1 − i2) + t.

Then for 0 ≤ k ≤ m, the shift polynomials are

gk,i1,i2,i3(x, y, z) = zi3(f(x, y, z))kem−k, for i1 = i2 = k, i3 = 0, ..., t and

gk,i1,i2,i3(x, y, z) = xi1−kzi3(f(x, y, z))kem−k, for i1 = k + 1, ...,m, i2 = k,

i3 = 0, ..., (i1 − i2) + t.

Suppose X = N δ, Y = Nγ1 and Z = Nγ2 are the upper bound for k, k1 and k0 respectively,

then define the lattice L spanned by the coefficient of the vectors gk,i1,i2,i3(xX, yY, zZ).

For example, the matrix M of L when m = 2 and t = 1 is as given in the Table 5.3.
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Note that the matrix M of L is lower triangular matrix and the coefficient of the leading

monomial of gk,i1,i2,i3(x, y, z) = zi3(f(x, y, z))kem−k, for i1 = i2 = k,

i3 = 0, ..., t is XkY kem−kZi3 and gk,i1,i2,i3(x, y, z) = xi1−kzi3(f(x, y, z))kem−k,

for i1 = k + 1, ...,m, i2 = k, i3 = 0, ..., (i1 − i2) + t is Xi1Y kem−kZi3 .

Also note that these coefficients are the diagonal elements of the matrix M , so the

determinant is

det(L) = eneXnXY nY ZnZ (5.2.1)

where

ne =

m∑
k=0

k∑
i1=k

k∑
i2=k

t∑
i3=0

(m− k) +

m∑
k=0

m∑
i1=k+1

k∑
i2=k

(i1−i2)+t∑
i3=0

(m− k)

=
1

8
m4 +

1

12
(4t+ 9)m3 +

1

8
(8t+ 11)m2 +

1

12
(8t+ 9)m,

nX =
m∑
k=0

k∑
i1=k

k∑
i2=k

t∑
i3=0

k +
m∑
k=0

m∑
i1=k+1

k∑
i2=k

(i1−i2)+t∑
i3=0

i1

=
1

8
m4 +

1

12
(4t+ 9)m3 +

1

8
(8t+ 11)m2 +

1

12
(8t+ 9)m,

nY =

m∑
k=0

k∑
i1=k

k∑
i2=k

t∑
i3=0

k +

m∑
k=0

m∑
i1=k+1

k∑
i2=k

(i1−i2)+t∑
i3=0

k

=
1

24
m4 +

1

12
(2t+ 3)m3 +

1

24
(12t+ 11)m2 +

1

12
(4t+ 3)m,

nZ =
m∑
k=0

k∑
i1=k

k∑
i2=k

t∑
i3=0

i3 +
m∑
k=0

m∑
i1=k+1

k∑
i2=k

(i1−i2)+t∑
i3=0

i3

=
1

24
m4 +

1

12
m3(2t+ 3) +

1

24
(6t2 + 18t+ 11)m2 +

1

12
(9t2 + 13t+ 3)m+

1

2
(t2 + t)

and the dimension of L is

ω =

m∑
k=0

k∑
i1=k

k∑
i2=k

t∑
i3=0

1 +

m∑
k=0

m∑
i1=k+1

k∑
i2=k

(i1−i2)+t∑
i3=0

1

=
1

6
m3 +

1

2
m2(t+ 2) +

1

6
m(9t+ 11) + (t+ 1).
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Take t = τm, then for sufficiently large m, the exponents ne, nX , nY , nZ and the dimension

ω reduce to

ne =
1

24
(3 + 8τ)m4 + o(m3),

nX =
1

24
(3 + 8τ)m4 + o(m3),

nY =
1

24
(1 + 4τ)m4 + o(m3),

nZ =
1

24
(1 + 4τ + 6τ2)m4 + o(m3),

ω =
1

6
(1 + 3τ)m3 + o(m2).

Applying the LLL algorithm to the basis vectors of the lattice L, i.e., coefficient vectors

of the shift polynomials, we get a LLL-reduced basis say {v1, v2, ..., vω} and from the

Theorem 1.3.25 we have

||v1|| ≤ ||v2|| ≤ ||v3|| ≤ 2
ω(ω−1)
4(ω−2) det(L)

1
ω−2 .

In order to apply the generalization of Howgrave-Graham result in Theorem 1.3.25, we

need the following inequality

2
ω(ω−1)
4(ω−2) det(L)

1
ω−2 <

em√
ω
.

from this, we deduce

det(L) <
1(

2
ω(ω−1)
4(ω−2)

√
ω

)ω−2 e
m(ω−2) <

1(
2
ω(ω−1)
4(ω−2)

√
ω

)ω−2 e
mω.
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As the dimension ω is not depending on the public encryption exponent e, 1(
2
ω(ω−1)
4(ω−2)

√
ω

)ω−2

is a fixed constant, so we need the inequality det(L) < emω.

Using (5.2.1), we get the inequality

eneXnXY nY ZnZ < emω.

Substitute all values and taking logarithms, neglecting the lower order terms and after

simplifying by m4 we get

(3 + 8τ)α+ (3 + 8τ)δ + (1 + 4τ)γ1 + (1 + 4τ + 6τ2)γ2 − 4α(1 + 3τ) < 0.

The left hand side inequality is minimized at τ = α−(2δ+γ1+γ2)
3γ2

and putting this value in

the above inequality we get

δ <
1

2
α− 1

2
γ1 +

1

16
γ2 −

1

16

√
48(α− γ1)γ2 + 33γ2

2 .

From the first three vectors v1, v2 and v3 in LLL reduced basis we consider three polyno-

mials g1(x, y, z), g2(x, y, z) and g3(x, y, z) over Z such that g1(x0, y0, z0) = g2(x0, y0, z0) =

g2(x0, y0, z0) = 0. Suppose g1, g2 and g3 are algebraically independent and let h1(x, y)

be the resultant polynomial of g1(x, y, z) and g2(x, y, z) with respect to z and h2(x, y)

be the resultant polynomial of g1(x, y, z) and g3(x, y, z) with respect to z and if h1, h2

are algebraically independent and let h(x) be the resultant polynomial of h1(x, y) and

h2(x, y) with respect to y, then we have h(x) is not identically zero and with a solution

x = x0 from Remark 1.3.33 & 1.3.34. Note that if k is small such that k ≤ N δ for

δ < 1
2α−

1
2γ1 + 1

16γ2 − 1
16

√
48(α− γ1)γ2 + 33γ2

2 , then x0 = k is a solution for the polyno-

mial h(x) over Z. With the knowledge of k, we can find the ϕ(N) and the value p+ q can

be obtained from ϕ(N). Then we can factor the RSA modulus N as (p+q)2−4N = (p−q)2.
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Theorem 5.2.1. Let N = pq be an RSA modulus with q < p < 2q. Let e = Nα, X =

N δ, Y = Nγ1 , Z = Nγ2 and k be the multiplicative inverse of ϕ(N) modulo e. Suppose

the prime sum p + q is of the form p + q = 2nk0 + k1, for a known positive integer n

and assume that |k0| ≤ |k1| then for |k| ≤ X, |k1| ≤ Y and |k0| ≤ Z one can factor N in

polynomial time if

δ <
1

2
α− 1

2
γ1 +

1

16
γ2 −

1

16

√
48(α− γ1)γ2 + 33γ2

2 . (5.2.2)

Proof. Follows from the above argument and the LLL lattice basis reduction algorithm

operates in polynomial time [29].

�

Suppose |k1| ≤ |k0|. As 2|ϕ(N), gcd(e, 2n) = 1 for any n. If 2n
′
=(2n)−1 mod e then the

triple (k,−k0,−k1) is a solutions for the modular polynomial equation f(x, y, z) ≡ 0 mod e

where f(x, y, z) = 2n
′
x(N+1)+xy+2n

′
xz−2n

′
with the leading monomial xy with coeffi-

cient 1. Applying the above analysis to the above modular equation for the upper bounds

X = N δ, Y = Nγ1 and Z = Nγ2 of k, k0 and k1 respectively, we get the bound for δ same

as in (5.2.2).

Note that for any given primes p and q with q < p < 2q, we can always find a positive

integer n such that p + q = 2nk0 + k1 where 0 ≤ |k0|, |k1| ≤≈ 0.25. A typical example is

2n ≈ 3√
2
N0.25 as p+ q < 3√

2
N0.5 [34]. Denoting the bound for δ as in (5.2.2) by δ5 and as

γ2 ≤ γ1 for |k0| ≤ |k1| or |k1| ≤ |k0|, in the Table 5.4 we represent the values of γ1 and γ2

for given α and the bound δ5 which is grater than α−
√

α
2 , δ3 for β ≈ 0.5.
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ααα γ1γ1γ1 γ2γ2γ2 δ5δ5δ5

0.501 0.25 0.249 - 0 0.00067 - 0.1255

0.15 0.149 - 0 0.07227 - 0.1755

0.01 0.009 - 0 0.21710 - 0.2455

0.55 0.25 0.225 - 0 0.02557 - 0.15

0.15 0.149 - 0 0.09084 - 0.2

0.01 0.009 - 0 0.24021 - 0.27

0.75 0.25 0.133 - 0 0.13687 - 0.25

0.15 0.149 - 0 0.16923 - 0.3

0.01 0.009 - 0 0.33508 - 0.37

1 0.25 0.052 - 0 0.29073 - 0.375

0.15 0.116 - 0 0.29005 - 0.425

0.01 0.009 - 0 0.45457 - 0.495

Table 5.4: The improved bounds for δ for β ≈ 0.5 and for a given e with suitable values
of γ1 and γ2.

In the following Table 5.5 we give the attack bounds for δ for the small multiplicative

inverse of ϕ(N) mod e obtained using methods based on lattice based techniques with

respect to bivariate and trivariate polynomial congruences for certain values of α and

β ≈ 0.5 thereby depicting the refinement of attack bounds for δ.
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ααα δ1δ1δ1 δ2δ2δ2 δ3δ3δ3 δ4δ4δ4 δ5δ5δ5

0.501 0.0005 0.0005001873 0.0005002497 0.0005001874 γ1 = 0.25 0.00067 - 0.1255

γ2 =0.249 - 0

γ1 =0.15 0.07227 - 0.1755

γ2 = 0.149 - 0

γ1 =0.01 0.21710 - 0.2455

γ2 = 0.009 - 0

0.55 0.025 0.0254519548 0.0255955759 0.0254626986 γ1 = 0.25 0.02557 - 0.15

γ2 =0.225 - 0

γ1 =0.15 0.09084 - 0.2

γ2 =0.149 - 0

γ1 =0.01 0.24021 - 0.27

γ2 = 0.009 - 0

0.75 0.125 0.1349307066 0.1376275643 0.1358898943 γ1 = 0.25 0.13687 - 0.25

γ2 = 0.133 - 0

γ1 =0.15 0.16923 - 0.3

γ2 =0.149 - 0

γ1 =0.01 0.33508 - 0.37

γ2 = 0.009 - 0

1 0.25 0.2847495629 0.2928932188 0.2898979485 γ1 = 0.25 0.29073 - 0.375

γ2 = 0.052 - 0

γ1 =0.15 0.29005 - 0.425

γ2 = 0.116 - 0

γ1 = 0.01 0.45457 - 0.495

γ2 =0.009 - 0

Table 5.5: Refinement of attack bounds for δ using lattice based techniques with respect
to bivariate and trivariate polynomials.
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To improve the bound for δ as in (5.2.2), i.e., δ5 in a lower dimension than the above

dimension, first we construct a sublattice SL of L and after that we apply the sublattice

based techniques to the lattice SL given by J. Blömer, A. May in [3], and are described in

the following section.

5.2.1 An Attack Bound Using Sublattice Reduction

Techniques

In this section, an attack bound for a small multiplicative inverse k of ϕ(N) modulo e

when the prime sum p + q is of the form p + q = 2nk0 + k1, where n is a given positive

integer and k0 and k1 are two suitably small unknown integers using sublattice reduction

techniques is described.

For 0 ≤ k ≤ m, divide the shift polynomials, in the above method according to t = 0

and t ≥ 1. Then for t = 0, the shift polynomials g(x, y, z) are

g(x, y, z) =


zi3(f(x, y, z))kem−k, for i1 = i2 = k, i3 = 0

xi1−kzi3(f(x, y, z))kem−k, for k ≤ m− 1, i1 = k + 1, ...,m, i2 = k, i3 = 0, ..., (i1 − i2).

and for t ≥ 1, the shift polynomials h(x, y, z) are

h(x, y, z) =



zi3(f(x, y, z))kem−k, for i1 = i2 = k, i3 = 1, ..., t

xi1−kzi3(f(x, y, z))kem−k, for k ≤ m− 1, i1 = k + 1, ...,m, i2 = k,

i3 = (i1 − i2) + 1, ..., (i1 − i2) + t.

Now M be the matrix of L with each row is the coefficients of the shift polynomial
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g-shifts



em, xem, xzem, x2em, x2zem, x2z2em, ..., xmem, xmzem, ..., xmzmem,

fem−1, xfem−1, xzfem−1, ..., xm−1fem−1, xm−1zfem−1, ..., xm−1zm−1fem−1,

...

fm−1e, xfm−1e, xzfm−1e,

fm,

h-shifts



zem, ...ztem, xz2em, ..., xz1+tem, ..., xmzm+1em, ..., xmzm+tem,

zfem−1, ...ztfem−1, xz2fem−1, ..., xz1+tfem−1, ..., xm−1zmfem−1, ..., xm−1z(m−1)+tfem−1,

...

zfm−1e, ..., ztfm−1e, xz2fm−1e, ..., xz1+tfm−1e,

zfm, ..., ztfm

and each column is the coefficients of each variable (in shift polynomials)

(first (1
6m

3+m2+11
6 m+1) columns)



1, x, xz, x2, x2z, x2z2, ..., xm, xmz, ..., xmzm,

xy, x2y, x2yz, x3y, x3yz, x3yz2, ..., xmy, xmyz, ..., xmyzm−1,

...

xm−1ym−1, xmym−1, xmym−1z,

xmym,

(remaining columns)



z, ..., zt, xz2, ..., xz1+t, ..., xmzm+1, ..., xmzm+t,

xyz, ..., xyzt, x2yz2, ..., x2yz1+t, ..., xmyzm, ..., xmyz(m−1)+t,

...

xm−1ym−1z, ..., xm−1ym−1zt, xmym−1z2, ..., xmym−1z1+t,

xmymz, ..., xmymzt.

As xy is the leading monomial in f(x, y, z) with coefficient 1, the diagonal elements in the

matrix M are
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g-shifts



em, Xem, XZem, X2em, X2Zem, X2Z2em, ..., Xmem, XmZem, ..., XmZmem,

XY em−1, X2Y em−1, X2Y Zem−1, ..., XmY em−1, XmY Zem−1, ..., XmY Zm−1em−1,

...

Xm−1Y m−1e,XmY m−1e,XmY m−1Ze,

XmY m,

h-shifts



Zem, ..., Ztem, XZ2em, ..., XZ1+tem, ..., XmZm+1em, ..., XmZm+tem,

XY Zem−1, ..., XY Ztem−1, ..., XmY Zmem−1, ..., XmY Z(m−1)+tem−1,

...

Xm−1Y m−1Ze, ...,Xm−1Y m−1Zte,XmY m−1Z2e, ...,XmY m−1Z1+te,

XmY mZ, ...,XmY mZt.

Construction of a sublattice SSSL of L:

The construction of a sublattice SL of L in order to improve the bound for δ is given in

the following.

• First remove following rows in M corresponding to g-shifts

em, xem, xzem, ..., xm−1em, ..., xm−1zm−1em,

fem−1, xfem−1, xzfem−1, ..., xm−2fem−1, ..., xm−2zm−2fem−1,

...

fm−2e2, xfm−2e2, xzfm−2e2,

fm−1e.

Therefore the remaining rows in M corresponding to g-shifts are

xmem, xmzem, ..., xmzmem,
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xm−1fem−1, ..., xm−1zm−1fem−1,

...

xfm−1e, xzfm−1e,

fm,

and its corresponding g-shifts can be written as

gs(x, y, z) = xl1zl2(f(x, y, z))kem−k for k = 0, ...,m, l1 = m− k, l2 = 0, ..., l1.

• Now remove some rows in M corresponding to h-shifts are

zem, ..., ztem, ..., xm−1zmem, ..., xm−1z(m−1)+tem,

zfem−1, ..., ztfem−1, ..., xm−2zm−1fem−1, ..., xm−2z(m−2)+tfem−1,

...

zfm−2e2, ..., ztfm−2e2, xz2fm−2e2, ..., xz1+tfm−2e2,

zfm−1e, ..., ztfm−1e.

Therefore the remaining rows in M corresponding to h-shifts are

xmzm+1em, ..., xmzm+tem,

xm−1zmfem−1, ..., xm−1z(m−1)+tfem−1,

...

xz2fm−1e, ..., xzt+1fm−1e,

zfm, ..., ztfm, and its corresponding h-shifts can be written as

hs(x, y, z) = xl1zl2(f(x, y, z))kem−k for k = 0, ...,m, l1 = m− k, l2 = l1 + 1, ..., l1 + t.

Now let SL be the sub-lattice of L spanned by the coefficients of the vectors gs(xX, yY, zZ)

and hs(xX, yY, zZ) shifts and Ms be the matrix of the lattice SL.

Note that the matrix Ms is not square. So apply the sublattice based techniques to the

basis of SL or the rows of Ms to get a square matrix. Using that square matrix, the attack
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bound can be found and is given in the following.

Applying sub-lattice based techniques to get an attack bound:

In [3], J. Blomer, A. May proposed a method to find an attack bound for low deciphering

exponent in a smaller dimension than the approach by Boneh and Durfee’s attack in [5].

Apply their method based on sublattice reduction techniques to our lattice SL to get an

attack bound and is described in the following.

In order to apply the Howgrave-Graham’s theorem [12] by using Theorem 1.3.25, we

need three short vectors in SL as our polynomial consists of three variables. But note

that Ms is not a square matrix. So, first construct a square matrix Msl by removing some

columns in Ms, which are small linear combination of non-removing columns in Ms. Then

the short vector in Msl lead to short reconstruction vector in SL.

Construction of a square sub-matrix Msl of Ms.

Columns in M and Ms are same and each column in M is nothing but the coefficients

of a variable, which is a leading monomial of the polynomial g or h-shifts. The first

(1
6m

3 +m2 + 11
6 m+1) and remaining

(
1
2(m2 +m)t+ (m+ 1)t

)
columns are corresponding

to the leading monomial of the polynomials g and h-shifts respectively. Therefore,

1. the first (1
6m

3 + m2 + 11
6 m + 1) columns are the coefficients of the each variable

xi1yi2zi3 for i1 = i2 = k, i3 = 0 and i1 = k + 1, ...,m, i2 = k, i3 = 0, ..., (i1 − i2)

and remaining
(

1
2(m2 +m)t+ (m+ 1)t

)
columns are the coefficients of the each

variable xi1yi2zi3 for i1 = i2 = k, i3 = 1, ..., t and i1 = k + 1, ...,m, i2 = k, i3 =

(i1 − i2) + 1, ..., (i1 − i2) + t. So the variable xi1yi2zi3 corresponds a column in first

(1
6m

3 +m2 + 11
6 m+1) columns if i1 ≥ i2 + i3 and corresponds a column in remaining(

1
2(m2 +m)t+ (m+ 1)t

)
columns if i1 < i2 + i3.
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2. As 1, x, xy, xz are the monomials of f , the set of all monomials of fm for m ≥ 0 is

{xi1yi2zi3 ; i1 = 0, ...,m, i2 = 0, ..., i1, i3 = 0, ..., i1 − i2}. Therefore, the coefficient of

the variable xi1yi2zi3 in fm is non-zero if and only if i3 ≤ i1 − i2, i.e., i1 ≥ i2 + i3.

Remove columns in Ms corresponding to the coefficients of the variable xaybzc for all

0 ≤ a ≤ m − 1 and note that every such column is
(
m−(a−b)
(m−a)!b!

)
· 1
Xm−aYm−a multiple of a

non-removed column, corresponding to the coefficients of xmym−(a−b)zc and is proved in

the following theorem.

Theorem 5.2.2. Each column in Ms corresponding to the coefficients of the variable

xaybzc, a leading monomial of the polynomial g or h-shifts, for all 0 ≤ a ≤ m − 1 is(
m−(a−b)
(m−a)!b!

)
· 1
Xm−aYm−a multiple of a non-removed column, represents the coefficients of

the variable xmym−(a−b)zc.

Proof. First assume that |k0| ≤ |k1|, then f(x, y, z) = (N + 1)x+ xy + 2nxz − 1.

For n = 0, ...,m, k1 = m − n, k2 = 0, ..., k1 , the gs-shifts xk1zk2fnek1 corresponds first

(1
6m

3 +m2 + 11
6 m+ 1) rows in Ms and for n = 0, ...,m, k1 = m− n, k2 = k1 + 1, ..., k1 + t,

the hs-shifts xk1zk2fnek1 corresponds remaining rows in Ms. We prove this theorem in

two cases.

Case(i): Any column in first (1
6m

3 + m2 + 11
6 m + 1) columns of Ms. i.e., a column

corresponding coefficients of a variable xaybzc with a ≥ b+ c, from the above analysis in

(1).

Given that 0 ≤ a ≤ m − 1. From the above analysis in (1) and (2), the coefficient of

xaybzc is non-zero in gs-shifts xk1zk2fnek1 if and only if a ≥ k1, b ≤ m − k1, c ≥ k2 and

a−k1 ≥ b+(c−k2). As k1 ≥ k2, k2 ≥ 0 and a−k1 ≥ b+(c−k2), max{0, k1−(a−(b+c))} ≤

k2 ≤ min{k1, c} and also as a−k1 < b+(c−k2) for k1 > a−b, k1 is such that 0 ≤ k1 ≤ a−b.
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Therefore, the coefficient of xaybzc is non-zero in gs-shifts xk1zk2fnek1 if and only if

a ≥ k1, b ≤ m−k1, c ≥ k2 and k1 = 0, ..., a−b, k2 = max{0, k1−(a−(b+c))}, ...,min{k1, c}.

Similarly we can prove that, the coefficient of xaybzc is non-zero in hs-shifts xk1zk2fnek1

if and only if a ≥ k1, b ≤ m − k1, c ≥ k2 and k1 = 0, ..., c, k2 = k1 + 1, ...,min{c, k1 + t}

using the inequalities k1 + 1 ≤ k2 ≤ k1 + t, a ≥ b+ c and analysis in (1) and (2), and say

min{c, k1 + t} = lt

The formula for finding a coefficient of a variable xl1yl2zl3 = (1)n−l1xl1−(l2+l3)(xz)l3(xy)l2

for l1 ≤ n− 1 in fn is

n!

(n− l1)!(l1 − (l2 + l3))!l2!l3!)
(−1)n−l1(N + 1)l1−(l2+l3)(2n)l3

and coefficient of xaybzc in xk1yk2fnek1 is nothing but a coefficient of xa−k1ybzc−k2 in fn.

Note that a column corresponding to a variable xmym−azc is in the non-removing columns

in Ms and coefficient of xmym−azc is zero for k1 > a− b in gs-shifts , k1 > c in hs-shifts.

The columns corresponding to a variable xaybzc and a variable xmym−azc only with non-

zero terms is depicted in Table 5.6.

Therefore, from Table 5.6 the result holds in this case.

Case(ii): Any column in remaining
(

1
2(m2 +m)t+ (m+ 1)t

)
columns of Ms, i.e.,a col-

umn corresponding coefficients of a variable xaybzc with a < b+c, from the above analysis

in (1).

The coefficient of xaybzc is non-zero in gs-shifts xk1zk2fnek1 if and only if a ≥ k1, b ≤

m−k1, c ≥ k2, a−k1 ≥ b+ (c−k2) and note for a < b+ c, a−k1 < b+ (c−k2) as k1 ≥ k2

in gs-shifts. So the coefficient of xaybzc is zero in all rows corresponding to gs-shifts.
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The coefficient of xaybzc is non-zero in hs-shifts xk1zk2fnek1 if and only if a ≥ k1, b ≤

m− k1, c ≥ k2 and a− k1 ≥ b+ (c− k2). For k1 > a− b, a− k1 < b+ (c− k2) and from

the inequalities k1 + 1 ≤ k2 ≤ k1 + t, a − k1 ≥ b + (c − k2), we have the coefficient of

xaybzc is non-zero in hs-shifts xk1zk2fnek1 if and only if a ≥ k1, b ≤ m − k1, c ≥ k2 and

k1 = 0, ..., a−b, k2 = max{k1+1, k1+(b+c)−a}, ...,min{c, k1+t}. Take lt = min{c, k1+t}.

Note that coefficient of xmym−azc is zero in all gs-shifts as a > c and for k1 > a − b

in hs-shifts. The columns corresponding to a variable xaybzc and a variable xmym−azc

only with non-zero terms is depicted in Table 5.7. Therefore, from Table 5.7 the result

holds in this case.

Now apply the above analysis to the polynomial f(x, y, z) = 2n
′
x(N+1)+xy+2n

′
xz−2n

′

for |k1| ≤ |k0|, then this result is obtained. �
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From the above theorem, all columns corresponding to a variable xaybzc for all 0 ≤ a ≤

m−1 are depending on a non-removed column, corresponding to a variable xmym−(a−b)zc

in Ms. Let Msl be a matrix formed by removing all above columns from the matrix Ms

and Sl be a lattice spanned by rows of Msl. Then the short vector in Sl lead to short

reconstruction vector in SL, i.e., if u =
∑
b∈B

cbb is a short vector in Sl then this lead to a

short vector ū =
∑
b∈B̄

cbb (same coefficients cb) in SL where B and B̄ are the basis for Sl

and SL respectively.

As we removed all depending columns in Ms to form a matrix Msl, apply the lattice

based techniques to Sl instead of SL to get an attack bound and this lattice reduction

techniques gives a required short vectors in SL for a given bound.

The matrix Msl is lower triangular with rows same as in Ms and each column corre-

sponding to coefficients of one of the variables ( leading monomials of gs and hs-shifts)

gs-shift



xm, xmz, ..., xmzm,

xmy, ..., xmyzm−1,

...

xmym−1, xmym−1z,

xmym,

hs-shift



xmzm+1, ..., xmzm+t,

xmyzm, ..., xmyz(m−1)+t,

...

xmym−1z2, ..., xmym−1z1+t,

xmymz, .., xmymzt.
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Therefore Sl is a lattice spanned by coefficient vectors of the shift polynomials gsl(xX, yY, zZ)

and hsl(xX, yY, zZ) where

gsl(x, y, z) = xl1zl2(f(x, y, z)−constant term off)nel1 for n = 0, ...,m, l1 = m−n, l2 = 0, ..., l1 and

hsl(x, y, z) = xl1zl2(f(x, y, z)−constant term off)nel1 for n = 0, ...,m, l1 = m−n, l2 = l1+1, ..., l1+t.

Since Sl is full-rank lattice, detSl = detMsl = en(e)Xn(X)Y n(Y )Zn(Z)

where n(e), n(X), n(Y ), n(Z) are denotes the number of e′s,X ′s, Y ′s, Z ′s in all the diag-

onal elements of Msl respectively. As xnyn is a leading monomial of fn with coefficient 1,

we have

n(e) =

m∑
n=0

∑
l1=m−n

l1∑
l2=0

l1 +

m∑
n=0

∑
l1=m−n

l1+t∑
l2=l1+1

l1

= (1/3)m3 +m2 + (1/2)(m2 +m)t+ (2/3)m,

n(X) =
m∑
n=0

∑
l1=m−n

l1∑
l2=0

n+ l1 +
m∑
n=0

∑
l1=m−n

l1+t∑
l2=l1+1

n+ l1

= (1/2)m3 + (3/2)m2 + (m2 +m)t+m,

n(Y ) =

m∑
n=0

∑
l1=m−n

l1∑
l2=0

n+
m∑
n=0

∑
l1=m−n

l1+t∑
l2=l1+1

n

= (1/6)m3 + (1/2)m2 + (1/2)(m2 +m)t+ (1/3)m,

n(Z) =

m∑
n=0

∑
l1=m−n

l1∑
l2=0

l2 +

m∑
n=0

∑
l1=m−n

l1+t∑
l2=l1+1

l2

= (1/6)m3 + (1/2)(m+ 1)t2 + (1/2)m2 + (1/2)(m2 + 2m+ 1)t+ (1/3)m

and dim(Sl) = ω =
m∑
n=0

∑
l1=m−n

l1∑
l2=0

1 +
m∑
n=0

∑
l1=m−n

l1+t∑
l2=l1+1

1

= (1/2)m2 + (m+ 1)t+ (3/2)m+ 1.
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Take t = τm, then for sufficiently large m, the exponents n(e), n(X), n(Y ), n(Z) and the

dimension ω reduce to

ω =

(
1

2
+ τ

)
m2 + o(m2),

n(e) =

(
1

3
+

1

2
τ

)
m3 + o(m3),

n(X) =

(
1

2
+ τ

)
m3 + o(m3),

n(Y ) =

(
1

6
+

1

2
τ

)
m3 + (m3),

n(Z) =

(
1

6
+

1

2
τ +

1

2
τ2

)
m3 + o(m3).

Applying the LLL algorithm to the basis vectors of the lattice Sl, i.e., coefficient vectors

of the shift polynomials, we get a LLL-reduced basis say {v1, v2, ..., vω} and from the

Theorem 1.3.25 we have

||v1|| ≤ ||v2|| ≤ ||v3|| ≤ 2
ω(ω−1)
4(ω−2) det(Sl)

1
ω−2 .

In order to apply the generalization of Howgrave-Graham result in Theorem 1.3.25, we

need the following inequality

2
ω(ω−1)
4(ω−2) det(Sl)

1
ω−2 <

em√
ω
.

from this, we deduce

det(Sl) <
1(

2
ω(ω−1)
4(ω−2)

√
ω

)ω−2 e
m(ω−2) <

1(
2
ω(ω−1)
4(ω−2)

√
ω

)ω−2 e
mω.

As the dimension ω is not depending on the public encryption exponent e, 1(
2
ω(ω−1)
4(ω−2)

√
ω

)ω−2
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is a fixed constant, so we need the inequality det(Sl) < emω,

i.e., en(e)Xn(X)Y n(Y )Zn(Z) < emω.

Substitute all values and taking logarithms, neglecting the lower order terms and after

simplifying by m3 we get

(−1− 3τ)α+ (3 + 6τ)δ + (1 + 3τ)γ1 + (1 + 3τ + 3τ2)γ2 < 0.

The left hand side inequality is minimized at τ = α−(2δ+γ1+γ2)
2γ2

and putting this value in

the above inequality we get

δ <
1

2
α− 1

2
γ1 −

1

6

√
6(α− γ1)γ2 + 3γ2

2 .

From the first three short vectors v1, v2 and v3 in LLL reduced basis of a basis B in

Sl we consider three polynomials g1(x, y, z), g2(x, y, z) and g3(x, y, z) over Z such that

g1(x0, y0, z0) = g2(x0, y0, z0) = g3(x0, y0, z0) = 0. These short vectors v1, v2 and v3 lead

to a short vector v̄1, v̄2 and v̄3 respectively and ḡ1(x, y, z), ḡ2(x, y, z) and ḡ3(x, y, z) its

corresponding polynomials. Apply the same analysis in the previous section to the above

polynomials to get the factors p and q of RSA modulus N .

Theorem 5.2.3. Let N = pq be an RSA modulus with q < p < 2q. Let e = Nα, X =

N δ, Y = Nγ1 , Z = Nγ2 and k be the multiplicative inverse of ϕ(N) modulo e. Suppose

the prime sum p+ q is of the form p+ q = 2nk0 + k1, for a known positive integer n and

for |k| ≤ X,max{|k0|, |k1|} ≤ Y and min{|k0|, |k1|} ≤ Z one can factor N in polynomial

time if

δ <
1

2
α− 1

2
γ1 −

1

6

√
6(α− γ1)γ2 + 3γ2

2 . (5.2.3)

Proof. Follows from the above argument and the LLL lattice basis reduction algorithm

operates in polynomial time [29]. �
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(a) α = 0.501
(b) α = 0.55

(c) α = 0.75 (d) α = 1

Figure 5.1: The region of δsl and δL for α = 0.501, 0.55, 0.75, 1.

Note that for any given primes p and q with q < p < 2q, we can always find a positive

integer n such that p + q = 2nk0 + k1 where 0 ≤ |k0|, |k1| ≤≈ 0.25. A typical example is

2n ≈ 3√
2
N0.25 as p+ q < 3√

2
N0.5 [34]. So take γ1 and γ2 in the range (0,0.25).

Let δL and δsl be the bounds for δ in inequalities (5.2.2) and (5.2.3) respectively. Then

note that δsl is slightly larger than δL and is depicted in Figure 5.1 for α = 0.51, 0.55, 0.750

and 1.

In the Figure 5.1, x, y, z-axis represents γ1, γ2, bound for δ respectively and yellow, red

regions represents δsl, δL receptively. From this figure, it is noted that the yellow region

is slightly above the red region, i.e., δsl is slightly grater than δL and this improvement

increases when the values of α increases.
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As the dimension of L is (1/6)m3 + (1/2)m2(t + 2) + (1/6)m(9t + 11) + (t + 1)

for t =
(
α−(2δ+γ1+γ2)

3γ2

)
m [19] and Sl is (1/2)m2 + (m + 1)t + (3/2)m + 1 for t =(

α−(2δ+γ1+γ2)
2γ2

)
m, note the dimension of Sl is (1/6)m3+(1/3)t(m2−1)+(1/2)m2+(1/3)m,

for t =
(
α−(2δ+γ1+γ2)

2γ2

)
smaller than the dimension of L.

A new attack bound for deciphering exponent d with a composed prime sum:

In this section, we apply the same analysis for getting bound for d which we have earlier

obtained resultant bound for k.

From the relation ed ≡ 1(mod ϕ(N)), we get

t(N + 1− (2nk0 + k1)) + 1 ≡ 0(mod e) (5.2.4)

for t = ed−1
ϕ(N) and the prime sum p+ q = 2nk0 + k1.

Now define

f ′(x, y, z) =


(N + 1)x+ xy + (2n)xz + 1 if |k0| ≤ |k1|

2n
′
x(N + 1) + xy + 2n

′
xz + 2n

′
if |k1| ≤ |k0|.

From equation (5.2.4), note that if |k0| ≤ |k1| then (t,−k1,−k0) is a solution and if

|k1| ≤ |k0| then (t,−k0,−k1) is a solution for the modular polynomial equation f ′(x, y, z) ≡

0(mod e).

As the polynomials f(x, y, z), f ′(x, y, z) differ by signs only, we can implement the above

argument for f(x, y, z) to f ′(x, y, z) and obtained new bound on d for t < d = N δ′ ,

max |k0|, |k1| ≤ Nγ1 , min |k0|, |k1| ≤ Nγ2 and for e = Nα is

δ′ <
1

2
α− 1

2
γ1 −

1

6

√
6(α− γ1)γ2 + 3γ2

2 . (5.2.5)



127

For α = 1, the Boneh and Durfee’s bound for d = N δ′ is N0.292. The new bound on d

may overcome this bound for α = 1 and for some values of γ1 and γ2 and that values are

depicted in the following table.

γ1 γ2 δ′ new bound

0.40 0.005-0 0.2929-0.3

0.35 0.0094-0 0.2929-0.325

0.25 0.052-0 0.2929-0.375

0.15 0.1152-0 0.2929-0.425

0.01 0.009-0 0.4563-0.495

Table 5.8: For α = 1, the values of bound on d = N δ′ in terms of γ1 and γ2.

For e = Nα, |p − q| = Nβ, max{|k0|, |k1|} ≤ Nγ1 and min{|k0|, |k1|} ≤ Nγ2 and for

N δ, an upper bound for ϕ(N)−1 mod e, the refinement process of RSA attack bounds on

δ is depicted in the following table.

Lattice based attack Attack bound

Attacks with x-shifts δ < (α− β)/2

Attack with x and y shifta δ < (3α+ β − 2
√
β(3α+ β))/3

Attack with sublattice based techniques α− β(1 + α) < δ < α−
√
αβ

Attack with sublattice based techniques δ < (2α− 6β + 2
√
α2 − αβ + 4β2)/5

with lower dimension

Attack with for p+ q as a composed form δ < 1
2α−

1
2γ1 + 1

16γ2 − 1
16

√
48(α− γ1)γ2 + 33γ2

2

Attack with for p+ q as a composed form δ < 1
2α−

1
2γ1 − 1

6

√
6(α− γ1)γ2 + 3γ2

2

and with sublattice based techniques

Table 5.9: Refinement process of RSA attack bounds on δ for (ϕ(N)−1 mod e) ≤ N δ.
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5.3 Extending Lattice-Based Attacks to an

RSA-Like Cryptosystem over E(Zpq)

All the lattice-based attacks on RSA for small multiplicative inverse of ϕ(N) modulo e

may be extended to RSA-like cryptosystem over elliptic curves E(Zpq) due to KMOV by

repeating the argument for ϕ(N) replaced by ψ(N) = (p+ 1)(q + 1).

The above lattice-based attacks on RSA for p− q bounded can be extended to RSA-

like cryptosystem over elliptic curves E(Zpq) due to KMOV, according to the polynomial

congruence as in the following

When p− qp− qp− q is bounded RSA RSA-like over E(Zpq)E(Zpq)E(Zpq)

due to KMOV

Polynomial Congruence x(A+ y)− 1 ≡ 0 mod e x(A+ y)− 1 ≡ 0 mod e

where A = N + 1− d2
√
Ne. where A = N + 1 + d2

√
Ne.

Solution (k,−(p+ q − d2
√
Ne)) (k, p+ q − d2

√
Ne)

where k = ϕ(N)−1 mod e. k = ψ(N)−1 mod e.

note as the monomials are same for both the polynomials with respect to ϕ(N) and ψ(N),

the arguments of our results when p− q is bounded can be repeated for ϕ(N) replaced by

ψ(N) then it is observed that RSA and RSA-like have same attack bounds for δ, given as:

δ <
α− β

2
,

δ <
3α+ β − 2

√
β(3α+ β)

3
,

α− β(1 + α) < δ < α−
√
αβ and

δ <
2α− 6β + 2

√
α2 − αβ + 4β2

5
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for p− q = Nβ and N δ is an upper bound for ϕ(N)−1 mod e and ψ(N)−1 mod e in RSA

and RSA-like cryptosystem over elliptic curves E(Zpq) due to KMOV respectively.

The lattice-based attack on RSA with a composed prime sum p + q = 2nk0 + k1,

for known positive integer n, suitable small integers k0, k1 can be extended to RSA-like

cryptosystem over elliptic curves E(Zpq) due to KMOV, according to the polynomial

congruence as in the following

RSA attack with RSA RSA-like over E(Zpq)E(Zpq)E(Zpq)

a composed prime sum due to KMOV

Polynomial Congruence (N + 1)x+ xy + 2nxz − 1 ≡ 0 mod e (N + 1)x+ xy + 2nxz − 1 ≡ 0 mod e

for |k0| ≤ |k1|

Solution (k,−k1,−k0) (k, k1, k0)

where k = ϕ(N)−1 mod e. k = ψ(N)−1 mod e.

Polynomial Congruence 2n
′
x(N + 1) + xy + 2n

′
xz − 2n

′ ≡ 0 mod e 2n
′
x(N + 1) + xy + 2n

′
xz − 2n

′ ≡ 0 mod e

for |k1| ≤ |k0|

Solution (k,−k0,−k1) (k, k0, k1)

where k = ϕ(N)−1 mod e. k = ψ(N)−1 mod e.

note as the monomials are same for both the polynomials with respect to ϕ(N) and ψ(N),

the arguments of our result when the prime sum is of the form p + q = 2nk0 + k1 can

be repeated for ϕ(N) replaced by ψ(N) then it is observed that RSA and RSA-like have

same attack bounds for δ, given as:

δ <
1

2
α− 1

2
γ1 +

1

16
γ2 −

1

16

√
48(α− γ1)γ2 + 33γ2

2

and δ <
1

2
α− 1

2
γ1 −

1

6

√
6(α− γ1)γ2 + 3γ2

2 .

for a composed prime sum p+ q = 2nk0 + k1 and N δ, Nγ1 and Nγ2 are the upper bounds

for k,max{|k0|, |k1|} and min{|k0|, |k1|} respectively.
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5.4 Summary

In this chapter it is shown that RSA is insecure if ϕ(N) has small multiplicative inverse

k modulo e, the public encryption exponent. For k ≤ N δ, the attack bounds for δ are de-

scribed by using lattice based techniques with respect to bivariate polynomial congruence

and this attack bound for δ is further refined for β ≈ 0.5 by taking the prime sum p + q

as a composed prime sum i.e., p + q = 2nk0 + k1 where n is a known positive integer, k0

and k1 are suitably small unknown integers and applying the lattice based arguments for

trivariate polynomials. This refinement of attack bound for δ is depicted for certain values

of α and β ≈ 0.5. This refined attack bound is slightly improved by using the sub-lattice

based techniques and this method requires lattice of smaller dimension than the above

method. Also a new attack bound for the deciphering exponent d with above composed

prime sum is given and compare it to Boneh and Durfee’s bound. It is observed that these

lattice-based attacks on RSA for small multiplicative inverse of ϕ(N) modulo e can be

extended to the RSA-like cryptosystem over E(Zpq) due to KMOV and the corresponding

analysation is given.



Chapter 6

Conclusion

The idea of Wiener to obtain a convergent e
N for certain bounds on the private exponent d

by using certain estimations of ϕ(N) was extended for refinement of the bounds by Weger,

Maitra-Sarkar by developing certain estimates for ϕ(N). The bounds on private exponent

d were refined further by using the lattice reduction techniques. The lattice based attacks

by Boneh-Durfee, Blömer-May, Weger and Maitra-Sarkar, gave bounds and refined the

bounds for the private exponent d. In this project the existing continued fraction based

and lattice based attacks that are given for RSA with low decryption exponent are ex-

tended to other variants of RSA. The advantage of lattice based attacks proposed by us is

that we considered the other invariant of RSA like p, q, ϕ(N) and noted that these attacks

can also be mounted for the private key exponent d not in the range of existing attack

bounds. It is also noted that looking at ψ(N) = (p+ 1)(q + 1) as the analogue of Euler’s

function ϕ(N) in the RSA-like cryptosystem over elliptic curve E(Zpq) due to KMOV, all

the lattice attacks can be extended to RSA-like cryptosystem over elliptic curve E(Zpq)

due to KMOV. This may be adapted for other RSA-like cryptosystems with Dickson poly-

nomials, Lucas sequences etc. by identifying the corresponding analogue to ϕ(N).

All these attacks teach us to avoid the major difficulties while implementing RSA and

sustain against all existing attacks. We conclude here and note that this study of refine-

ment of attack bounds of RSA is useful in taking some precautionary measures in the

adaptation of RSA according to the following Table 6.1 on refinement of attack bounds.
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Appendix A

Modular Arithmetic

A.1 Modular Arithmetic

Definition A.1.1. Let m be a positive integer we say a is congruent to b modulo m

and write a ≡ b mod m if m|b− a.

Theorem A.1.2. ≡ is an equivalence relation on Z, the set of all integers and the equiv-

alence classes are called residue classes denoted as ā and are given as

∀ a ∈ Z, ā = {a+mt : t ∈ Z}.

Remark A.1.3. The set of all residue classes is denoted as Z/mZ is a finite set and

{0,1,2,......m-1} are called least positive residues modulo m.

Theorem A.1.4. Z/mZ forms a Ring with respective to addition ‘+’ and multiplication

‘.’ given as follows:

For any ā, b̄ ∈ Z/m,Z ā = a+mZ, b̄ = b+mZ and

ā+ b̄ = a+ b+mZ

ā.b̄ = ab+mZ.

Theorem A.1.5. The residue class a + mZ is invertible in Z/mZ (i.e., the congruence

ax ≡ 1 mod m is solvable) if and only if gcd(a,m) = 1. If gcd(a,m) = 1, then the
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inverse of a+mZ is uniquely determined (i.e, the solution x of ax ≡ 1 mod m is uniquely

determined mod m).

Theorem A.1.6. The residue class ring Z/mZ is a field if and only if m is a prime

number.

Definition A.1.7. The Euler function ϕ :N→ N is defined as

ϕ(n) = #{m : 1 ≤ m ≤ n, (m,n) = 1}.

Theorem A.1.8. If p is a prime then ϕ(p) = p− 1.

Theorem A.1.9. (Euler-Fermat:) If gcd(a,m) = 1 then aϕ(m) ≡ 1 mod m.

Theorem A.1.10. The set of all invertible residue classes modulo m is a finite abelian

group with respect to multiplication denoted as (Z/mZ)∗ is of order ϕ(m).

Theorem A.1.11. (Chinese Remainder:)[1] Let m1,m2......mr be positive integers

that are pairwise co-prime and a1, a2, ......, ar. Then the system of congruences

x ≡ a1 mod m1

x ≡ a2 mod m2
.
.
.

x ≡ ar mod mr.

has a unique solution modulo the product m1.m2...mr.

Theorem A.1.12. Letm1,m2, · · · ,mn be pairwise co prime integers and letm = m1m2 · · ·mn.

Then the map

Z/mZ→
n∏
i=1

Z/miZ, a+mZ 7→ (a+m1Z, · · · , a+mnZ)

is an isomorphism of rings.

Theorem A.1.13. Let m1.....mr be pair wise integers and m =
r∏
i=0

(mi), then

ϕ(m) = ϕ(m1).....ϕ(mn).
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A.1.1 Time estimates in Arithmetic

The security of a cryptosystem depends on time taken in investigating the cryptoalgorithm

or the secret key parameter. Hence, studying the running time of an algorithm plays a

vital role in cryptography.

In cryptographic applications multi precision integer must be added, multiplied and

divided with remainder. To estimate the running time of such applications we must study

how long such operations take.

Definition A.1.14. Let b be an integer greater than 1 for each positive integer there

is a uniquely determined positive integer k and uniquely determined sequence {ai}ki=1,

ai ∈ {0, . . . , b− 1} with a1 6= 0 and

a = a1b
k−1 + a2b

k−2 + . . .+ ak−2b+ ak

=

k∑
i=1

aib
k−1

and the sequence {a1, a2 . . . , ak} is called b-adic expansion of ‘a’ or ‘a’ is a k-digit number

to the base b [6].

The number of digits in the 2-adic expansion of a positive integer ‘a’ is denoted as

size(a) [6] and is given by

size(a) =

[
log a

log 2

]
+ 1

= O(log a)

Definition A.1.15. Time taken to perform an arithmetic operations + or - on binary

digits 1, 0, i.e., 1 ± 1, 1 ± 0, 0 ± 0, each with the carry or without a carry is called a bit

operation.

Remark A.1.16. The amount of time taken by a computer to perform a task is propor-
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tional to the number of bit operations involved in the task.

Definition A.1.17. The time estimate of task is defined to be the estimation of number

of bit operations.

Example A.1.18. Addition of a 7-bit integer (1110010)2 with a 6-bit integer (100110)2

is given as,

1110010

100110

10011000

The above addition we requires 8 bit operations and the time estimate taken to perform

such operation is taken as 8 units.

For any a,b ∈ Z, the following table represents the time for the given operation.

operation Time

a+ b O(max{log a, log b})

a · b O(log a · log b)

a = bq + r O(log b · log q)

gcd(a, b) O(log a · log b)

(a+ b) mod N O(logN)

(ab) mod N O(logN)2

a | b mod N O(logN)2

ae mod N O(log e)(logN)2

A.1.2 Polynomial running time algorithm

An algorithm with input integers z1, z2, . . . , zN of k1, k2, . . . , kN is said to have polynomial

running time [17]. If there are non-negative integers e1, e2, . . . , eN such that the time
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estimate of algorithm denoted as TA given as

TA = O((logZ1)e1 · (logZ2)e2 · . . . · (logZn)en) = O(ke11 · . . . · k
en
N ) [6].

Definition A.1.19. An algorithm is said to be efficient if it has polynomial running time

with the ei and the O-constant are small.

Theorem A.1.20. Suppose the residue classes modulo m are represented by their least

non negative representatives. Then two residue classes mod m can be added and sub-

tracted using time and space O(size m). They can be multiplied and divided using time

O((sizem)2) and space O(size m).

Proposition A.1.21. Suppose that n known to be product of two distinct primes. Then

knowledge of two primes p, q is equivalent to knowledge of ϕ(n). More precisely, one can

compute ϕ(n) from p, q in O(log n) bit operations and one can compute p and q from n

and ϕ(n) in (log3 n) bit operations.

A.1.3 Modular Exponentiation

It is a method for computing modulo n.

To compute ge mod n,

Step 1: Express binary expression of e.

e =
∑k

i=0 xi2
i, xi = 0 or 1

Step 2: Succussive square g2i , 0 ≤ i ≤ k
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Step 3:

ge = g
∑k
i=0 xi2

i

=

k∏
i=0

(g2i)xi

=
k∏

i=0,xi=1

g2i

Remark A.1.22. Computation of ge mod n based on the computation of g2i , for

0 ≤ i ≤ k and this reduces the total number of multiplication than by usual multiplication.

Theorem A.1.23. The computation of ge mod m requires time O((size)(size m2)).

Remark A.1.24. Modular exponentiation is in polynomial time.
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KMOV public key cryptosystem

B.1 KMOV public key cryptosystem

E : y2 = x3 + Ax+ B is the Weierstrass form of an Elliptic curve. For any finite field Fq

of characteristic p, E(Fq) = {(x, y) ∈ Fq × Fq; y2 = x3 + Ax + B} ∪ {∞} is the elliptic

curve over Fq. In 1985 Koblitz[27] and Miller[33] independently proposed using the group

of points on an elliptic curves over finite fields in discrete log cryptosystems, as there are

no sub exponential time algorithms to find the discrete log on elliptic curves.

The elliptic curves considered by Koyama-Maurer-Okamoto-Vanstone[46][50] for KMOV

system are the elliptic curves in the form

Eb(N) : y2 = x3 + b mod N for N = pq, p, q primes with p ≡ q ≡ 2 mod 3.

The curves Eb(p) : y2 = x3 + b mod p and Eb(q) : y2 = x3 + b mod q are super singular

with orders #Eb(p) = p + 1 & #Eb(q) = q + 1. Further as the group E(Zpq) is such

that E(Zpq) ' E(Zp) ⊕ E(Zq), the order of the group E(Zpq) is given as #E(ZN ) =

#E(Zp) ·#E(Zq) = (p+ 1)(q + 1).

In the KMOV system the receiver chooses primes p, q with p ≡ q ≡ 2 mod 3 takes N = pq

and chooses e such that 1 ≤ e ≤ (p+ 1)(q + 1) with gcd(e, (p+ 1)(q + 1)) = 1 and makes

(N, e) public. The sender represents the message M = (m1,m2) as a point on elliptic

curve Eb : y2 = x3 +b, for b = m2
2−m3

1 mod N . The message is encrypted as C = eM and
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the cipher text C is sent to the receiver. The receiver for decryption uses the decryption

exponent d such that 1 ≤ d ≤ (p + 1)(q + 1) with ed ≡ 1 mod (p + 1)(q + 1) and obtains

the message as dC = deM = M mod N . The computations are carried using the Group

laws on elliptic curves[46][14].
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1 Introduction

RSA Cryptosystem [1] is the first public key Cryptosystem invented by Ronald Rivest, Adi Shamir
and Leonard Adleman in 1977 where the encryption and decryption are based on the fact that if
N = pq is the modulus for RSA, p, q distinct primes, if 1 ≤ e ≤ φ(N) with (e, φ(N)) = 1 and d,
the multiplicative inverse of e modulo φ(N), then med = m mod N , for any message m, an integer
in ZN . The security [2] of this system depends on the difficulty of finding factors of a composite
positive integer, that is product of two large primes.

Wiener [3] showed that RSA Cryptosystem has a weakness if the private deciphering exponent

d < N
1
4√
2
. In [4], Boneh and Durfee showed that RSA is weak for d < N0.292. In [5] Subhamoy

Maitra and Santanu Sarkar shown that RSA is weak when d = Nδ, δ < 1
2
− γ

2
, where |ρq−p| ≤ Nγ

16
,

γ ≤ 1
2
for 1 ≤ ρ ≤ 2 and also for d < 1

2
Nδ along with a condition on exponent e = O(N

3
2
−2δ),

δ ≤ 1
2
and some extensions considering the difference p− q are also given. In [6] R.G.E Pinch has

shown that the Wiener’s attack extends to RSA-like Cryptosystems over elliptic curves. In this
paper we show that the Wiener’s extension on RSA that refines the attack bound on deciphering
exponent can also be extended to RSA-like Cryptosystems on elliptic curves. The study is based
on developing certain estimates of Euler function φ(N) and ψ(N) an analogue to φ(N).

2 Wiener’s Attack on RSA Cryptosystem

The main idea of Wiener’s attack [3] is that certain restrictions of d allow the fraction t
d
to be a

convergent of e
N
, where t = ed−1

φ(N)
, this follows by using the approximation theorem.

Theorem 2.1. (Approximation Theorem): Let r be a real number, for any integer a and b
with gcd(a, b) = 1 such that |r − a

b
| < 1

2b2
, b ≥ 1 then a

b
is convergent of r. [7]

Theorem 2.2. (Wiener’s ttack): Let N = pq, for q < p < 2q be the modulus for RSA, e be the

public enciphering exponent and d be the deciphering exponent. If d ≤ N
1
4√
6
, then t

d
is a convergent

of e
N
, for t = ed−1

φ(N)
.

Theorem 2.3. (Implementation of Wiener’s attack): Let d ≤ N
1
4√
6

and for any convergent t′

d′

of e
N
, take φ′(N) = ed′−1

t′ , x′ = N−φ′(N)+1
2

and y′ =
√
x′2 −N . If x′, y′ ∈ N, then the private key

(q, p, d) = (x′ − y′, x′ + y′, d′).

The idea of Wiener is that certain restrictions of d allow to obtain a convergent of e
N

that is useful
in finding the factors p, q of N and the deciphering exponent d. In [5] Subhamoy Maitra and
Santanu Sarkar proposed Wiener’s extension on RSA cryptosystem improving the attack bound for
the decryption exponent d. In the following section we recall the corresponding results for Wiener’s
extension [8].

3 Wiener’s Extension on RSA

Wiener’s extension on a RSA Cryptosystem, refining the attack bound is based on following theorem
[9]. Wiener’s extension is the idea of obtaining a convergent of e

N+1−2N
1
2

rather than that of e
N
,

which increases the bound of d, from N
1
4 to Nδ, for 1

4
< δ < 3

4
− β. These ideas are based on

developing certain estimates for φ(N).

2
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Theorem 3.1. Let N = pq for q < p < 2q be the modulus of RSA with the enciphering exponent

e and the deciphering exponent d. For ∆ = p − q = Nβ , if d < N
3
4
−β , then t

d
is a convergent of

e

N+1−2N
1
2
.

Theorem 3.2. (Implementation of Wiener’s Extension) Let d < N
3
4
−β for p− q = Nβ and

for any convergent t′

d′ of e

N+1−2N
1
2
, take φ′(N) = ed′−1

t′ , x′ = N−φ(N)+1
2

and y′ =
√
x′2 −N . If

x′, y′ ∈ N, then the private key (q, p, d) = (x′ − y′, x′ + y′, d′).

Implementation of extension of Wiener’s attack is the same as implementation of Wiener’s attack
on RSA Cryptosystem.

4 Extending Wiener’s Extension to RSA-like Crypto-
systems over Elliptic Curves

E : y2 = x3 + Ax + B is the Weierstrass form of an Elliptic curve. For any finite field Fq of
characteristic p, E(Fq) = {(x, y) ∈ Fq × Fq; y2 = x3 + Ax + B} ∪ {∞} is the elliptic curve over
Fq. In 1985 Koblitz [10] and Miller [11] independently proposed using the group of points on an
elliptic curves over finite fields in discrete log cryptosystems, as there are no sub exponential time
algorithms to find the discrete log on elliptic curves.

The elliptic curves considered by Koyama-Maurer-Okamoto-Vanstone [12][13] for KMOV system
are the elliptic curves in the form

Eb(N) : y2 = x3 + b mod N for N = pq, p, q primes with p ≡ q ≡ 2 mod 3.

The curves Eb(p) : y
2 = x3 + b mod p and Eb(q) : y

2 = x3 + b mod q are super singular with orders
#Eb(p) = p+1 & #Eb(q) = q+1. Further as the group E(Zpq) is such that E(Zpq) ≃ E(Zp)⊕E(Zq),
the order of the group E(Zpq) is given as #E(ZN ) = #E(Zp) ·#E(Zq) = (p+ 1)(q + 1) [14].

In the KMOV system the receiver chooses primes p, q with p ≡ q ≡ 2 mod 3 takes N = pq and
chooses e such that 1 ≤ e ≤ (p+ 1)(q + 1) with gcd(e, (p+ 1)(q + 1)) = 1 and makes (N, e) public.
The sender represents the message M = (m1,m2) as a point on elliptic curve Eb : y2 = x3 + b,
for b = m2

2 − m3
1 mod N . The message is encrypted as C = eM and the cipher text C is sent

to the receiver. The receiver for decryption uses the decryption exponent d such that 1 ≤ d ≤
(p+ 1)(q + 1) with ed ≡ 1 mod (p+ 1)(q + 1) and obtains the message as dC = deM =M mod N .
The computations are carried using the Group laws on elliptic curves [12][15][16][17].

Pinch in his paper [6] showed that Wiener’s attack applies to KMOV as well. In [5] Subhamoy Maitra
and Santanu Sarkar proposed Wiener’s extension on RSA cryptosystem improving the attack bound
for the decryption exponent d. In this paper we show that Wiener’s extension also applies to the
above RSA like cryptosystems over elliptic curves(KMOV). This is done by looking at ψ(N) :=
(p+ 1)(q + 1) as an analogue of Euler’s function φ(N). In the above RSA like cryptosystems over
the specific elliptic curves Eb : y2 = x3 + b mod N , Wiener’s extension is extended by developing
certain estimates on ψ(N), we prove the results regarding the estimates for ψ(N) in the following.

Lemma 4.1. If q < p < 2q and ψ(N) = (p+1)(q+1) then N+1+2N
1
2 < ψ(N) < N+1+ 3√

2
N

1
2 .

Proof.

We have ψ(N) = (p+ 1)(q + 1)

= N + 1 + pq

> N + 1 + 2N
1
2 as p + q > 2N

1
2 . . . (1)

3
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Also We have

(
p + q +

3√
2
N

1
2

)(
p + q− 3√

2
N

1
2

)
< 0 for q < p < 2q.

Then

(
p + q− 3√

2
N

1
2

)
should be less than 0.

Therefore ψ(N) = N + 1 + p + q <

(
N+ 1 +

3√
2
N

1
2

)
as

(
p + q− 3√

2
N

1
2

)
< 0 . . . (2).

From (1) and (2) N + 1 + 2N
1
2 < ψ(N) < N + 1 + 3√

2
N

1
2 .

Theorem 4.2. (Wiener’s Extension on RSA over E(ZN )) Let N = pq for q < p < 2q with
the enciphering exponent e and deciphering exponents d such that ed−1

t
= ψ(N). If ∆ = p − q =

Nβ , d < N
3
4
−β , then t

d
is a convergent of e

N+1+2N
1
2
.

Proof. We have∣∣∣∣ e

N + 1 + 2N
1
2

− t

d

∣∣∣∣ = ∣∣∣∣ e

N + 1 + 2N
1
2

+
e

ψ(N)
− e

ψ(N)
− t

d

∣∣∣∣
≤

∣∣∣∣ e

N + 1 + 2N
1
2

− e

ψ(N)

∣∣∣∣+ ∣∣∣∣ e

ψ(N)
− t

d

∣∣∣∣
= e

∣∣∣∣ 1

N + 1 + 2N
1
2

− 1

ψ(N)

∣∣∣∣+ 1

ψ(N)d
, as e > 0 and ed− 1 = ψ(N)t.

< ψ(N)

∣∣∣∣∣ψ(N)− (N + 1 + 2N
1
2 )

(N + 1 + 2N
1
2 )ψ(N)

∣∣∣∣∣+ 1

ψ(N)d
, as e < ψ(N).

= ψ(N)

∣∣∣∣∣N + 1 + p+ q −N − 1− 2N
1
2

ψ(N)(N + 1 + 2N
1
2 )

∣∣∣∣∣+ 1

ψ(N)d

=
p+ q − 2N

1
2

N + 1 + 2N
1
2

+
1

ψ(N)d
as p + q− 2N

1
2 > 0.

<
∆2

4N
1
2

(
1

N + 1 + 2N
1
2

)
+

1

ψ(N)d
,

as p + q− 2N
1
2 =

∆2

p + q + 2N
1
2

.

<
∆2

4N
1
2

(
1

φ(N)

)
+

1

φ(N)d
,

as N + 1 + 2N
1
2 > φ(N) and ψ(N) > φ(N).

Therefore

∣∣∣∣ e

N + 1− 2N
1
2

− t

d

∣∣∣∣ < 1

φ(N)

(
∆2

4N
1
2

+
1

d

)
. . . (1)

Now note ψ(N) > 3
4
N , since p+ q < 1

4
+ 1 for all N

1
2 > 9 by assuming N is large.

Also note 8d < N for all N
1
4 > 8, since d < N

3
4 .

Therefore, for ∆ = Nβ and d = Nδ and substitute φ(N) > 3
4
N and N > 8d in (1), we get∣∣∣∣ e

N + 1 + 2N
1
2

− t

d

∣∣∣∣ < 1

3
N2β− 3

2 +
4

3Nd

<
1

3
N2β− 3

2 +
1

6N2δ

4
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and as 2β − 3
2
< −2β for all δ < 3

4
− β, we have∣∣∣∣ e

N + 1 + 2N
1
2

− t

d

∣∣∣∣ < 1

2d2
.

Therefore t
d
is a convergent of e

N+1+2N
1
2

for d < N
3
4
−β .

Now using the above estimates for ψ(N) we prove the following theorem of implementation of
Wiener’s extension.

Theorem 4.3. (Implementation of Wiener’s extension):Let d < N
3
4
−β for p − q = Nβ and

for any convergent t′

d′ of e

N+1+2N
1
2
, take ψ′(N) = ed′−1

t′ , x′ = ψ′(N)−N−1
2

and y′ =
√

(x′)2 −N. If

x′, y′ ∈ N, then ψ′(N) = ψ(N) and the private key is (p, q, d) = (x′ + y′, x′ − y′, d′).

Proof. For y′ =
√

(x′)2 −N,N = (x′ + y′) · (x′ − y′).

If x′, y′ ∈ N , then the possible cases are

(i)(x′ − y′) = 1 and (x′ + y′) = N

(ii)(x′ − y′) = q and (x′ + y′) = p , as N = pq and q < p.

For (x′ − y′) = 1 and (x′ + y′) = N, we have
N + 1

2
= x′.

Then ψ′(N)−N− 1 = 2x′ = N + 1.

Thus 2(N + 1) = ψ′(N).

=
ed′ − 1

t′

< N + 2 +
3√
2
N

1
2 , as

e

N + 2 + 3√
2
N

1
2

<
t′

d′ , for some t′, d′

and ψ(N) < N+ 1 +
3√
2
N

1
2 .

Therefore N
1
2 <

3√
2
.

Which is a contradiction, as we are choosing a large ’N.’

Hence case(i) is not possible.

Therefore, the only possible case is q = x′ − y′, p = x′ + y′.

By defining of x′,we have x′ =
ψ′(N)−N − 1

2

Then ψ′(N) = 2x′ +N + 1

= p+ q +N + 1

= ψ(N)

Now as ed′ = 1 mod ψ′(N) and ψ′(N) = ψ(N), d = d′.

Therefore, for ψ′(N), x′, y′ ∈ N, the private key (p, q, d) = (x′ + y′, x′ − y′, d′).

The following example demonstrates the working of KMOV cryptosystem.

5
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Example 4.4. The receiver chooses primes p = 5, q = 11 takes N = pq = 55. Then he chooses
e = 5 and makes (N, e) public.

The sender chooses a message M = (2, 3), a point on the elliptic curve Eb : y2 = x3 + 1 mod 55
and enciphers the message as C = eM mod N and sends the cipher text C to the receiver. The
computations are done by using the group laws on elliptic curves and the algorithms like doubling
and adding algorithm [15] may be used for computations

C = 5M = 5(2, 3) = (1 · 22 + 0 · 21 + 1 · 20)(2, 3)
= (2(2(2, 3)) + (2, 3))

= (2, 52) mod 55.

For decryption the receiver computes 29C mod 55 as follows

29C = (1 · 24 + 1 · 23 + 1 · 22 + 0 · 21 + 1.20)C

= 2(2(2(2(2, 52)))) + 2(2(2(2, 52))) + 2(2(2, 52)) + (2, 52) mod 55

= (2, 3) mod 55

=M mod 55, the required message.

Example 4.5. (Implementation of Wiener’s extension)

Let (N, e) = (10610503, 8916809) be the public key.

The continued fraction of

e

N + 1 + 2N
1
2

=
8916809

10610503 + 1 + 2 · (10610503) 1
2

∼ 0.83985

= [0; 1, 5, 4, 11, 5, 2, 1, 1, 1 . . .]

The first five convergents of the above continued fractions are

0

1
,
1

1
,
5

6
,
21

25
,
236

281
, . . . [18][19].

The required convergent is 236
281

as ψ′(N) = 10617048, x′ = 3272, y′ = 309 are such that ψ′(N), x′, y′ ∈
N.

Therefore the private key (p, q, d) = (x′ + y′, x′ − y′, d′) = (3581, 2963, 281).

5 Conclusion

The idea of Wiener is that certain restrictions of d allow to obtain a convergent of e
N

that is useful
in finding the factors p, q of N and the deciphering exponent d. Further Wiener’s extension is the
idea of obtaining a convergent of e

N+1−2N
1
2

rather than that of e
N
, which increases the bound of

d, from N
1
4 to Nδ, for 1

4
< δ < 3

4
− β. These ideas are based on developing certain estimates for

φ(N); Looking at ψ(N) = (p + 1)(q + 1) as the analogue of Euler’s function φ(N) in the RSA
like cryptosystems over the specific elliptic curves Eb : y2 = x3 + b mod N , Wiener’s extension is
extended by developing certain estimates on ψ(N).

6
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on the prime difference p− q = Nβ and the maximum bound for δ is α−
√
α
2

for e = Nα and for β ≈ 0.5. If the prime

sum p + q is of the form p + q = 2nk0 + k1 where n is a given positive integer and k0 and k1 are two suitably small

unknown integers then the maximum bound for δ can be improved for β ≈ 0.5.
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1. Introduction

RSA Cryptosystem is the first public key cryptosystem invented by Ronald Rivest, Adi Shamir and Leonard Adalman in 1977

where the encryption and decryption are based on the fact that if N = pq, is the modulus for RSA, p, q distinct primes, if

1 ≤ e ≤ ϕ(N) with (e, ϕ(N)) = 1 and d, the multiplicative inverse of e modulo ϕ(N), then med = m mod N , for any message

m, an integer in ZN . The security of this system depends on the difficulty of finding factors of a composite positive integer,

that is product of two large primes. In 1990, M.J.Wiener [20] was the first one to describe a cryptanalytic attack on the use

of short RSA deciphering exponent d. This attack is based on continued fraction algorithm which finds the fraction t
d
, where

t = ed−1
ϕ(n)

in a polynomial time when d is less than N0.25 for N = pq and q < p < 2q. Using lattice reduction approach based

on the Coppersmith techniques [6] for finding small solutions of modular bivariate integer polynomial equations, D. Boneh

and G. Durfee [3] improved the wiener result from N0.25 to N0.292 in 2000 and J. Blömer and A. May [4] has given an RSA

attack for d less than N0.29 in 2001, that requires lattices of dimension smaller than the approach by Boneh and Durfee.

In 2006, E. Jochemsz and A. May [10], described a strategy for finding small modular and integer roots of multivariate

polynomial using lattice-based Coppersmith techniques and by implementing this strategy they gave a new attack on an

RSA variant called common prime RSA.

In our paper [8], we described an attack on RSA by using lattice based techniques implemented in the case when p − 1 or

q − 1 have small multiplicative inverse less than or equal to Nδ modulo the public encryption exponent e, for some small δ

and for q < p < 2q, e = Nα > p − 1. For r and s are the multiplicative inverses of p − 1 and q − 1 modulo e respectively,

∗ E-mail: panuradhakameswari@yahoo.in
?Both authors thank the University Grants Commission(UGC) for the support of the UGC grant under UGC-MRP scheme.
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and for Nδ is an upper bound of min{r, s} and Nγ is an upper bound of


p−

⌈√
N
⌉

if min{r, s} = r

q −
⌈√

N
⌉

if min{r, s} = s,

, we shown that

RSA will be insecure for δ <
3α+γ−2

√
γ(3α+γ)

3
when both x and y shifts are used and for δ < α−γ

2
when only x−shifts are

used. Later we improved the bound for δ up to α−√αγ by implementing the sublattice based techniques given by Boneh

and Durfee in [3] under the condition δ > α − γ(1 + α) and improved the bound for δ up to δ <
2α−6γ+2

√
α2−αγ+4γ2

5
by

implementing the sublattice based techniques with lower dimension given by J. Blömer and A. May in [4], this bound is

slightly less then the above bound but this method requires lattices of smaller dimension than the above method.

For r and s the multiplicative inverses of p − 1 and q − 1 modulo e respectively, we have k = rs mod e, the multiplicative

inverse of ϕ(N) modulo e. In this paper it is shown that if k is small, that is the multiplicative inverse of ϕ(N) modulo

e is small, then RSA will be insecure for q < p < 2q and e = Nα > p + q, the prime sum. This case may be considered

when both (p− 1) mod e and (q− 1) mod e do not have small inverses but ϕ(N) mod e has small inverse as in Table 1. Let

f(x, y) = x(y+A)− 1 where A = N + 1−
⌈
2
√
N
⌉
, then (k,

⌈
2
√
N
⌉
− (p+ q)) is a solution for the modular bivariate integer

polynomial equation f(x, y) ≡ 0 mod e and note Nβ = p− q, the prime difference is an upper bound for
⌈
2
√
N
⌉
− (p+ q).

For k ≤ Nδ, the attack bounds for δ are described by implementing all lattice based techniques as given in [8], based on

the theory of finding small bivariate modular integer polynomial equations to the above modular polynomial equation. For

β ≈ 0.5, the maximum bound for δ in which RSA will be insecure is such that α−
√

α
2

and this bound can be improved when

the prime sum p+ q is of the form p+ q = 2nk0 + k1 for known positive integer n and for unknown suitably small integers

k0, k1 by using the strategy given by E. Jochemsz and A. May as in [10] for finding small modular roots of multivariate

polynomials.

2. Preliminaries

In this section we state basic results on lattices, described briefly lattice basis reduction, Coppersmith’s method and

Howgrave-Graham theorem that are based on lattice reduction techniques are described.

Let u1, u2, ..., un ∈ Zm be linearly independent vectors with n ≤ m. Let det(L ) be a lattice spanned by < u1, u2, ..., un >.

Let b∗1, b
∗
2, ..., b

∗
n be the vectors obtained by applying the Gram-Schmidt process to the vectors u1, u2, ..., un. The determinant

of the lattice L is defined as det(L) :=
n∏
i=1

‖ b∗i ‖, where ‖ . ‖ denotes the Euclidean norm on vectors. The lattice L is called

full rank if n = m and when n = m, the determinant of L is equal to the determinant of the n× n matrix whose rows are

the basis vectors u1, u2, ..., un.

In 1982, A. K. Lenstra, H. W. Lenstra, Jr. and L. Lovasz [11] invented the LLL lattice based reduction algorithm to reduce a

basis and to solve the shortest vector problem in polynomial time. The general result on the size of individual LLL-reduced

basis vectors is given in the following and a proof of that result can be found in [12].

Theorem 2.1. Let L ba lattice of dimension ω. In polynomial time, the LLL-algorithm outputs reduced basis vectors vi,

1 ≤ i ≤ ω that satisfy

||v1|| ≤ ||v2|| ≤ ... ≤ ||vi|| ≤ 2
ω(ω−1)

4(ω+1−i) det(L )
1

ω+1−i .

An important application of lattice reduction found by Coppersmith in 1996 [6] is finding small roots of low-degree polynomial

equations. This includes modular univariate polynomial equations and bivariate integer equations. In 1997 Howgrave-

Graham [7] reformulated Coppersmith’s techniques and proposed a result which shows that if the coefficients of h(x, y) are

sufficiently small, then the equality h(x0, y0) = 0 holds not only modulo N , but also over integers. The generalization of

Howgrave-Graham result in terms of the Euclidean norm of a polynomial h(x1, x2, ..., xn) =
∑
ai1...inx

i1
1 ...x

in
n is defined by
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the Euclidean norm of its coefficient vector i.e., ||h(x1, x2, ..., xn)|| =
√∑

a2i1...in given as follows:

Theorem 2.2 (Howgrave-Graham). Let h(x1, x2, ..., xn) ∈ Z[x1, x2, ..., xn] be an integer polynomial that consists of at most

ω monomials. Suppose that

(1). h
(
x
(0)
1 , x

(0)
2 , ..., x

(0)
n

)
≡ 0 mod em for some m where |x(0)1 | < X1, |x(0)2 | < X2 . . . |x(0)n | < Xn, and

(2). ||h(x1X1, x2X2, ..., xnXn)|| < em√
ω
.

Then h((x1, x2, ..., xn) = 0 holds over the integers.

Resultant of two polynomials: The resultant of two polynomials f(x1, x2, . . . , xn) and g(x1, x2, . . . , xn) with respect to

the variable xi for some 1 ≤ i ≤ n, is defined as the determinant of Sylvester matrix of f(x1, x2, . . . , xn) and g(x1, x2, . . . , xn)

when considered as polynomials in the single indeterminate xi, for some 1 ≤ i ≤ n.

Remark 2.3. The resultant of two polynomials is non-zero if and only if the polynomials are algebraically independent .

Remark 2.4. If
(
x
(0)
1 , x

(0)
2 , . . . , x

(0)
n

)
is a common solution of algebraically independent polynomials f1, f2, . . . , fm for m ≥ n,

then these polynomials yield g1, g2, . . . , gn−1 resultants in n−1 variables and continuing so on the resultants yield a polynomial

t(xi) in one variable with xi = x
(0)
i for some i is a solution of t(xi). Note the polynomials considered to compute resultants

are always assumed to be algebraically independent.

3. Attack Bounds for RSA using Lattice Based Techniques based on
finding Small Modular Roots of Bivariate Polynomials

In our paper [8], we described an attack on RSA by using lattice based techniques implemented in the case when p − 1 or

q − 1 have small multiplicative inverse less than or equal to Nδ modulo the public encryption exponent e, for some small δ

and for q < p < 2q, e = Nα > p− 1.

Let f(x, y) = x(y + A) − 1 where A =
⌈√

N
⌉
− 1 and r, s be the multiplicative inverses of p − 1, q − 1 modulo the private

encryption exponent e respectively. For x0 = min{r, s} and y0 =


p−

⌈√
N
⌉

if min{r, s} = r

q −
⌈√

N
⌉

if min{r, s} = s,

the pair (x0, y0) is a

solution for the modular polynomial equation f(x, y) ≡ 0 mod e. For |x0| ≤ Nδ, |y0| ≤ Nγ , the attack bounds for δ are

described in [8] by using lattice reduction techniques in the direction of Boneh-Durfee [3] and Blömer-May [4] for q < p < 2q

and e = Nα > p− 1.

Applying the analysis described by Boneh-Durfee in [3] using x, y shifts and using only x shifts to the above modular

polynomial equation, we get the attack bounds for δ as given in the following Theorem and Corollary [8] respectively.

Theorem 3.1. Let N = pq be an RSA modulus with q < p < 2q. Let e = Nα, X = Nδ, Y = Nγ and r, s are the

multiplicative inverses of p − 1, q − 1 modulo e respectively. Suppose that |x0| ≤ X and |y0| ≤ Y then one can factor N in

polynomial time if

δ <
3α+ γ − 2

√
γ(3α+ γ)

3
.

Corollary 3.2. If the lattice basis reduction algorithm is implemented only using x−shifts and repeating the above argument

then we can factorize N whenever

δ <
α− γ

2
.
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In [8] further, the bound given in the above theorem is improved by implementing the ideas given by Boneh-Durfee [3] and

Blömer-May [4] to the above modular equation using sublattice based techniques as given in the following Theorems.

Theorem 3.3. Let N, p, q, e,X, Y, x0, y0, δ and γ be defined in Theorem 3. Suppose that |x0| ≤ X and |y0| ≤ Y , then RSA

is insecure if

α− γ(1 + α) < δ < α−√αγ.

Theorem 3.4. Let N, p, q, e,X, Y, x0, y0, δ and γ be defined in Theorem 3. Suppose that |x0| ≤ X and |y0| ≤ Y , then RSA

is insecure if

δ <
2α− 6γ + 2

√
α2 − αγ + 4γ2

5
.

The bound given in the Theorem 5 is slightly less than the bound(upper) given in the Theorem 4 but the method used to

obtain this bound requires lattice of smaller dimension than the above.

Now in this paper we first describe the attack bounds for RSA cryptosystem in this section using the lattice based techniques

based on the Coppersmith techniques [6] for finding small solutions of modular bivariate integer polynomial equations

following the idea of Boneh-Durfee [3] and Blömer-May [4], when ϕ(N) have some small multiplicative inverse modulo

e, note when either (p − 1) mod e or (q − 1) mod e has small inverse we may adapt the attack as in [8] but when both

(p− 1) mod e and (q − 1) mod e do not have small inverses the ϕ(N) mod e may have small inverse as in Table 1 then this

modified attack proposed in the following may be used.

e ϕ(N)−1 mod e (p− 1)−1 mod e (q − 1)−1 mod e

1 0 0 0

5 3 1 3

7 5 4 3

11 9 9 1

13 4 9 12

17 7 16 10

19 10 6 8

23 3 13 2

25 3* 11 23

29 21 20 17

31 26 2 13

35 33 11 3

37 16 7 34

41 22 18 24

43 28 35 18

47 12 3 4

49 12 46 45

53 45 10 31

55 53 31 23

59 4* 48 5

61 34 42 56

65 43 61 38

67 52 21 28

71 27 40 6

73 27 32 67

77 75 53 45

79 7 5 33

83 16 26 7

85 58 16 78

89 70 39 52

91 82 74 38
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e ϕ(N)−1 mod e (p− 1)−1 mod e (q − 1)−1 mod e

95 48 6 8

97 48 91 89

101 10 19 59

103 22 58 43

107 34 87 9

109 88 75 100

113 103 106 66

115 3* 36 48

119 75 67 10

121 75 53 111

125 28 86 73

127 43 8 53

131 58 41 11

133 124 25 122

137 5* 21 60

139 113 80 58

143 108 9 12

145 108 136 133

149 52 28 87

151 70 85 63

155 88 126 13

157 9* 108 144

161 26 151 94

163 45 51 68

167 147 94 14

169 147 74 155

173 82 119 101

175 103 11 73

179 124 56 15

181 33 34 166

185 53 81 108

187 75 152 78

191 1* 12 16

Table 1: Multiplicative inverse of ϕ(N), p− 1 and q − 1 modulo e for fixed N = pq = 13 · 17.

*For all such ϕ(N)−1 mod e in the table, note ϕ(N)−1 mod e is small but (p− 1)−1 mod e and (q − 1)−1 mod e are not small.

Let N = pq, q < p < 2q, p− q = Nβ and e = Nα > p+ q. As (e, ϕ(N)) = 1, there exist unique r, s such that

(p− 1)r ≡ 1 mod e and (q − 1)s ≡ 1 mod e.

Let k = rs mod e, then kϕ(N) ≡ 1 mod e, i.e., k is a multiplicative inverse of ϕ(N) modulo e. For g(x, y) = x(y + B) − 1

where B = N + 1−
⌈
2
√
N
⌉
, the pair (x0, y0) = (k,−((p+ q)−

⌈
2
√
N
⌉
)) is a solution for the modular polynomial equation

g(x, y) ≡ 0 mod e (in general (p+q)−
⌈
2
√
N
⌉

mod e ≤ (p+q)−
⌈
2
√
N
⌉

and (k,−((p+q)−
⌈
2
√
N
⌉

mod e)) is also a solution

but in this case (p+ q)−
⌈
2
√
N
⌉

mod e = (p+ q)−
⌈
2
√
N
⌉

as e > p+ q). Note as q <
√
N , p+ q−

⌈
2
√
N
⌉
< Nβ , hence Nβ

is an upper bound for y0. Now note as the monomials for the polynomial gm where g(x, y)=x(y+N + 1−
⌈
2
√
N
⌉
)− 1 and

for the polynomial fm where f(x, y)=x(y +
⌈√

N
⌉
− 1)− 1 described as in [8] are same for any positive integer m, we have

the same analysis as in [8] for the above given modular equation with the multiplicative inverse k of ϕ(N) mod e bounded

by Nδ, we have |k| ≤ Nδ and for x0 = k, RSA is insecure under the following conditions:

δ <
3α+ β − 2

√
β(3α+ β)

3
; (1)

δ <
α− β

2
; (2)
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α− β(1 + α) < δ < α−
√
αβ; (3)

δ <
2α− 6β + 2

√
α2 − αβ + 4β2

5
. (4)

Denoting the upper bounds for δ as in (1),(2),(3) and (4) by δ1, δ2, δ3 and δ4 respectively, we have the bound for δ corre-

sponding to α and β as given in Table 2, depicting the refinement of the attack bounds in the following.

α β δ

(≈) δ1 δ2 δ3 δ4

0.501 0.50 0.0005 0.0005001873 0.0005002497 0.0005001874

0.55 0.50 0.025 0.0254519548 0.0255955759 0.0254626986

0.75 0.50 0.125 0.1349307066 0.1376275643 0.1358898943

1 0.50 0.25 0.2847495629 0.2928932188 0.2898979485

Table 2: Bounds for δ corresponding to certain values of α and β ≈ 0.5 depicting the refinement.

By the analysis as in [8] note in all the above cases the maximum upper bound for δ is the bound as in (3), it is α −
√

α
2

for β ≈ 0.5 and for α = 0.501, 0.55, 0.75, 1, the value δ3 = α −
√

α
2
≈ 0.000501, 0.0254627, 0.135890, 0.289898 respectively

are the bounds for δ. Note the arguments above are considered for small multiplicative inverse of ϕ(N) mod e. Now in the

next section the attack bound for δ is further refined for β ≈ 0.5 by taking the prime sum p+ q as a composed prime sum

i.e., p+ q = 2nk0 + k1 where n is a known positive integer, k0 and k1 are suitably small unknown integers and applying the

lattice based arguments for trivariate polynomials.

4. An Attack Bound for RSA Using Lattice Based Techniques Based
on Finding Small Modular Roots of Trivariate Polynomials

In this section, the attack bound for RSA is described when the prime sum p + q is of the form p + q = 2nk0 + k1 with a

known positive integer n and unknown integers k0 and k1 using the lattice based techniques based on the E. Jochemsz and

A. May’s extended strategy [10] for finding small solutions of modular multivariate integer polynomial equations. In this

method the bound for δ can be improved for a suitable known integer n and suitable unknown parameters k0, k1 and for

β ≈ 0.5.

Let p+ q = 2nk0 + k1 where n is a given positive integer and k0 and k1 are unknown integers. First assume that |k0| ≤ |k1|.

As k(N + 1 − (p + q)) ≡ 1 mod e for k = rs mod e, the triple (x0, y0, z0) = (k,−k1,−k0) is a solution for the modular

polynomial equation f(x, y, z) ≡ 0 mod e for f(x, y, z) = (N + 1)x + xy + (2n)xz − 1 (observe that |k0| mod e = |k0| and

|k1| mod e = |k1| as e > p + q). To apply the generalization of Howgrave-Graham result to find the small modular roots

of the above equation f(x, y, z) ≡ 0 mod e, we use the extended strategy of Jochemsz and May [10]. Now define the set

Mk =
⋃

0≤j≤t
{xi1yi2zi3+t|xi1yi2zi3 is a monomial of fm and xi1yi2zi3

lk
is a monomial of fm−k}, where l is a leading monomial

of f and define the shift polynomials as gk,i1,i2,i3(x, y, z) = xi1yi2zi3

lk
(f ′(x, y, z))kem−k, for k = 0, ...,m, xi1yi2zi3 ∈Mk\Mk+1

and f ′ = a−1
l f mod e for the coefficient al of l. For f(x, y, z) = (N + 1)x+ xy + (2n)xz − 1, xi1yi2zi3 is a monomial of fm

if i1 = 0, ...,m, i2 = 0, ..., i1, i3 = 0, ..., (i1 − i2) and xy the leading monomial of f as |k0| ≤ |k1| with coefficient al = 1.

Then for 0 ≤ k ≤ m, xi1−kyi2−kzi3 is a monomial of fm−k if i1 = k, ...,m, i2 = k, ..., i1, i3 = 0, ..., (i1 − i2). Therefore

xi1yi2zi3 ∈Mk if i1 = k, ...,m, i2 = k, ..., i1, i3 = 0, ..., (i1− i2)+ t and xi1yi2zi3 ∈Mk+1 if i1 = k+1, ...,m, i2 = k+1, ..., i1,

i3 = 0, ..., (i1 − i2) + t. From this, we obtain for 0 ≤ k ≤ m,

xi1yi2zi3 ∈Mk \Mk+1 if i1 = k, i2 = k, i3 = 0, ..., t and if i1 = k + 1, ...,m, i2 = k, i3 = 0, ..., (i1 − i2) + t.
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Then for 0 ≤ k ≤ m, the shift polynomials are gk,i1,i2,i3(x, y, z) = zi3(f(x, y, z))kem−k, for i1 = i2 = k, i3 = 0, ..., t and

gk,i1,i2,i3(x, y, z) = xi1−kzi3(f(x, y, z))kem−k, for i1 = k+1, ...,m, i2 = k, i3 = 0, ..., (i1− i2)+ t. Suppose X = Nδ, Y = Nγ1

and Z = Nγ2 are the upper bound for k, k1 and k0 respectively, then define the lattice L spanned by the coefficient of the

vectors gk,i1,i2,i3(xX, yY, zZ). For example, the matrix M of L when m = 2 and t = 1 is as given in the Table 3. Note that

the matrix M of L is lower triangular matrix and the coefficient of the leading monomial of

gk,i1,i2,i3(x, y, z) = zi3(f(x, y, z))kem−k, for i1 = i2 = k, i3 = 0, ..., t is XkY kem−kZi3 and

gk,i1,i2,i3(x, y, z) = xi1−kzi3(f(x, y, z))kem−k, for i1 = k + 1, ...,m, i2 = k, i3 = 0, ..., (i1 − i2) + t is

Xi1Y kem−kZi3 . Also note that these coefficients are the diagonal elements of the matrix M , so the determinant is

det(L ) = eneXnXY nY ZnZ (5)

where

ne =

m∑
k=0

k∑
i1=k

k∑
i2=k

t∑
i3=0

(m− k) +

m∑
k=0

m∑
i1=k+1

k∑
i2=k

(i1−i2)+t∑
i3=0

(m− k)

=
1

8
m4 +

1

12
(4t+ 9)m3 +

1

8
(8t+ 11)m2 +

1

12
(8t+ 9)m,

nX =

m∑
k=0

k∑
i1=k

k∑
i2=k

t∑
i3=0

k +

m∑
k=0

m∑
i1=k+1

k∑
i2=k

(i1−i2)+t∑
i3=0

i1

=
1

8
m4 +

1

12
(4t+ 9)m3 +

1

8
(8t+ 11)m2 +

1

12
(8t+ 9)m,

nY =

m∑
k=0

k∑
i1=k

k∑
i2=k

t∑
i3=0

k +

m∑
k=0

m∑
i1=k+1

k∑
i2=k

(i1−i2)+t∑
i3=0

k

=
1

24
m4 +

1

12
(2t+ 3)m3 +

1

24
(12t+ 11)m2 +

1

12
(4t+ 3)m,

nZ =

m∑
k=0

k∑
i1=k

k∑
i2=k

t∑
i3=0

i3 +

m∑
k=0

m∑
i1=k+1

k∑
i2=k

(i1−i2)+t∑
i3=0

i3

=
1

24
m4 +

1

12
m3(2t+ 3) +

1

24
(6t2 + 18t+ 11)m2 +

1

12
(9t2 + 13t+ 3)m+

1

2
(t2 + t)

and the dimension of L is

ω =

m∑
k=0

k∑
i1=k

k∑
i2=k

t∑
i3=0

1 +

m∑
k=0

m∑
i1=k+1

k∑
i2=k

(i1−i2)+t∑
i3=0

1

=
1

6
m3 +

1

2
m2(t+ 2) +

1

6
m(9t+ 11) + (t+ 1).

Take t = τm, then for sufficiently large m, the exponents ne, nX , nY , nZ and the dimension ω reduce to

ne =
1

24
(3 + 8τ)m4 + o(m3),

nX =
1

24
(3 + 8τ)m4 + o(m3),

nY =
1

24
(1 + 4τ)m4 + o(m3),

nZ =
1

24
(1 + 4τ + 6τ2)m4 + o(m3),

ω =
1

6
(1 + 3τ)m3 + o(m2).
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Applying the LLL algorithm to the basis vectors of the lattice L , i.e., coefficient vectors of the shift polynomials, we get a

LLL-reduced basis say {v1, v2, ..., vω} and from the Theorem 1 we have

||v1|| ≤ ||v2|| ≤ ||v3|| ≤ 2
ω(ω−1)
4(ω−2) det(L )

1
ω−2 .

In order to apply the generalization of Howgrave-Graham result in Theorem 2, we need the following inequality

2
ω(ω−1)
4(ω−2) det(L )

1
ω−2 <

em√
ω
.

from this, we deduce

det(L ) <
1(

2
ω(ω−1)
4(ω−2)

√
ω

)ω−2 e
m(ω−2) <

1(
2

ω(ω−1)
4(ω−2)

√
ω

)ω−2 e
mω.

As the dimension ω is not depending on the public encryption exponent e, 1(
2

ω(ω−1)
4(ω−2) √ω

)ω−2 is a fixed constant, so we need

the inequality det(L ) < emω.

Using (5), we get the inequality

eneXnXY nY ZnZ < emω.

Substitute all values and taking logarithms, neglecting the lower order terms and after simplifying by m4 we get

(3 + 8τ)α+ (3 + 8τ)δ + (1 + 4τ)γ1 + (1 + 4τ + 6τ2)γ2 − 4α(1 + 3τ) < 0.

The left hand side inequality is minimized at τ = 1−(2δ+γ1+γ2)
3γ2

and putting this value in the above inequality we get

δ <
1

2
α− 1

2
γ1 +

1

6
γ2 −

1

6

√
48(1− γ1)γ2 + 33γ2

2 .

From the first three vectors v1, v2 and v3 in LLL reduced basis we consider three polynomials g1(x, y, z), g2(x, y, z) and

g3(x, y, z) over Z such that g1(x0, y0, z0) = g2(x0, y0, z0) = g2(x0, y0, z0) = 0. Suppose g1, g2 and g3 are algebraically

independent and let h1(x, y) be the resultant polynomial of g1(x, y, z) and g2(x, y, z) with respect to z and h2(x, y) be the

resultant polynomial of g1(x, y, z) and g3(x, y, z) with respect to z and if h1, h2 are algebraically independent and let h(x)

be the resultant polynomial of h1(x, y) and h2(x, y) with respect to y, then we have h(x) is not identically zero and with a

solution x = x0 from Remark 1 & 2. Note that if k is small such that k ≤ Nδ for δ < 1
2
α− 1

2
γ1+ 1

6
γ2− 1

6

√
48(1− γ1)γ2 + 33γ2

2 ,

then x0 = k is a solution for the polynomial h(x) over Z. With the knowledge of k, we can find the ϕ(N) and the value

p+ q can be obtained from ϕ(N). Then we can factor the RSA modulus N as (p+ q)2 − 4N = (p− q)2.

Theorem 4.1. Let N = pq be an RSA modulus with q < p < 2q. Let e = Nα, X = Nδ, Y = Nγ1 , Z = Nγ2 and k be the

multiplicative inverse of ϕ(N) modulo e. Suppose the prime sum p+ q is of the form p+ q = 2nk0 + k1, for a known positive

integer n and assume that |k0| ≤ |k1| then for |k| ≤ X, |k1| ≤ Y and |k0| ≤ Z one can factor N in polynomial time if

δ <
1

2
α− 1

2
γ1 +

1

6
γ2 −

1

6

√
48(1− γ1)γ2 + 33γ2

2 . (6)

Proof. Follows from the above argument and the LLL lattice basis reduction algorithm operates in polynomial time

[11].
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Suppose |k1| ≤ |k0|. As 2|ϕ(N), gcd(e, 2n) = 1 for any n. If 2n
′
=(2n)−1 mod e then the triple (k,−k0,−k1) is a solutions

for the modular polynomial equation f(x, y, z) ≡ 0 mod e where f(x, y, z) = 2n
′
x(N + 1) + xy + 2n

′
xz − 2n

′
with the

leading monomial xy with coefficient 1. Applying the above analysis to the above modular equation for the upper bounds

X = Nδ, Y = Nγ1 and Z = Nγ2 of k, k0 and k1 respectively, we get the bound for δ same as in (6).

Note that for any given primes p and q with q < p < 2q, we can always find a positive integer n such that p+ q = 2nk0 + k1

where 0 ≤ |k0|, |k1| ≤≈ 0.25. A typical example is 2n ≈ 3√
2
N0.25 as p+ q < 3√

2
N0.5 [14]. Denoting the bound for δ as in (6)

by δ5 and as γ2 ≤ γ1 for |k0| ≤ |k1| or |k1| ≤ |k0|, in the Table 4 we represent the values of γ1 and γ2 for given α and the

bound δ5 which is grater than α−
√

α
2

, δ3 for β ≈ 0.5.

α γ1 γ2 δ5

0.501 0.25 0.249 - 0 0.00067 - 0.1255

0.15 0.149 - 0 0.07227 - 0.1755

0.01 0.009 - 0 0.21710 - 0.2455

0.55 0.25 0.225 - 0 0.02557 - 0.15

0.15 0.149 - 0 0.09084 - 0.2

0.01 0.009 - 0 0.24021 - 0.27

0.75 0.25 0.133 - 0 0.13687 - 0.25

0.15 0.149 - 0 0.16923 - 0.3

0.01 0.009 - 0 0.33508 - 0.37

1 0.25 0.052 - 0 0.29073 - 0.375

0.15 0.116 - 0 0.29005 - 0.425

0.01 0.009 - 0 0.45457 - 0.495

Table 4: The improved bounds for δ for β ≈ 0.5 and for a given e with suitable values of γ1 and γ2.

In the following Table 5 we give the attack bounds for δ for the small multiplicative inverse of ϕ(N) mod e obtained using

methods based on lattice based techniques with respect to bivariate and trivariate polynomial congruences for certain values

of α and β ≈ 0.5 thereby depicting the refinement of attack bounds for δ.

α δ1 δ2 δ3 δ4 δ5

0.501 0.0005 0.0005001873 0.0005002497 0.0005001874 γ1 = 0.25 0.00067 - 0.1255

γ2 =0.249 - 0

γ1 =0.15 0.07227 - 0.1755

γ2 = 0.149 - 0

γ1 =0.01 0.21710 - 0.2455

γ2 = 0.009 - 0

0.55 0.025 0.0254519548 0.0255955759 0.0254626986 γ1 = 0.25 0.02557 - 0.15

γ2 =0.225 - 0

γ1 =0.15 0.09084 - 0.2

γ2 =0.149 - 0

γ1 =0.01 0.24021 - 0.27

γ2 = 0.009 - 0

0.75 0.125 0.1349307066 0.1376275643 0.1358898943 γ1 = 0.25 0.13687 - 0.25

γ2 = 0.133 - 0

γ1 =0.15 0.16923 - 0.3

γ2 =0.149 - 0

γ1 =0.01 0.33508 - 0.37

γ2 = 0.009 - 0
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α δ1 δ2 δ3 δ4 δ5

1 0.25 0.2847495629 0.2928932188 0.2898979485 γ1 = 0.25 0.29073 - 0.375

γ2 = 0.052 - 0

γ1 =0.15 0.29005 - 0.425

γ2 = 0.116 - 0

γ1 = 0.01 0.45457 - 0.495

γ2 =0.009 - 0

Table 5: Refinement of attack bounds for δ using lattice based techniques with respect to bivariate and trivariate

polynomials.

5. Conclusion

In this paper it is shown that RSA is insecure if ϕ(N) has small multiplicative inverse k modulo e, the public encryption

exponent. For k ≤ Nδ, the attack bounds for δ are described by using lattice based techniques with respect to bivariate

polynomial congruence and this attack bound for δ is further refined for β ≈ 0.5 by taking the prime sum p+q as a composed

prime sum i.e., p + q = 2nk0 + k1 where n is a known positive integer, k0 and k1 are suitably small unknown integers and

applying the lattice based arguments for trivariate polynomials. This refinement of attack bound for δ is depicted for certain

values of α and β ≈ 0.5.
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Abstract

In this paper, we mount an attack on RSA by using lattice based techniques implemented in the case
when p− 1 or q− 1 have small multiplicative inverse less than or equal to Nδ modulo the public encryption
exponent e, for some small δ and described the attack bounds for δ.
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1 Introduction

RSA Cryptosystem is the first public key cryptosystem invented by Ronald Rivest, Adi Shamir and Leonard
Adalman in 1977 where the encryption and decryption are based on the fact that if N = pq, is the modulus for
RSA, p, q distinct primes, if 1 ≤ e ≤ ϕ(N) with (e, ϕ(N)) = 1 and d, the multiplicative inverse of e modulo ϕ(N),
then med = m mod N , for any message m, an integer in ZN . The security of this system depends on the diffi-
culty of finding factors of a composite positive integer, that is product of two large primes. In 1990, M.J.Wiener
[15] was the first one to describe a cryptanalytic attack on the use of short RSA deciphering exponent d. This
attack is based on continued fraction algorithm which finds the fraction t

d , where t = ed−1
ϕ(n) in a polynomial time

when d is less than N0.25 for N = pq and q < p < 2q. In 2000, D. Boneh and G. Durfee [2] improved the Wiener
result from N0.25 to N0.292, for q < p < 2q using lattice reduction approach based on the theory of finding small
roots of polynomials by methods due to Coppersmith. A lattice attack on RSA with short secret exponent d,
for d less than N0.29 was given by J. Blömer and A. May [3] in 2001, this is slightly less than that of Boneh and
Durfee but this method requires lattices of dimension smaller than the approach by Boneh and Durfee. In 2002,
de Weger [14], extended the Wiener’s attack in the range N0.25 ≤ d ≤ N0.75−β , for p− q = Nβ and q < p < 2q
by method of continued fraction and the bound improved to δ < 1

6 (4β + 5) − 1
3

√
(4β + 5)(4β − 1) using the

first result of Boneh and Durfee(lattice based techniques) in [2] and the bound improved to δ < 1 −
√

2β − 1
2

using the second result of Boneh and Durfee(sub-lattice based techniques)in [2] under the condition δ > 1− 4β.
Instead of considering p− q = Nβ , Subhamoy Maitra and Santanu Sarkar [12] considered |p− ρq| ≤ Nγ

16 where
1 ≤ ρ ≤ 2 to get some additional results. That is, given ρ with 1 ≤ ρ ≤ 2 known to the attacker, RSA is
insecure when d = Nδ and δ < 1

2 −
γ
2 , for |p−ρq| ≤ Nγ

16 and γ ≤ 1
2 and also showed that this bound on δ can be

extended using the lattice based techniques. In this attack the value of ρ should be known to the attacker and
is possible by the fact that, the knowledge of most significant bits(MSBs) [13] of p or q can provide approxi-
mation of ρ or one may try to guess ρ for different values (that are computationally fesible) to mount the attack.

In this paper it is shown that RSA will be insecure if one of the multiplicative inverse of p − 1 and q − 1
modulo the public encryption exponent e is small. Let e = Nα > p−1, s and r be the multiplicative inverses of
q− 1 and p− 1 modulo e respectively, then note the pairs (s, q−

⌈√
N
⌉
) and (r, p−

⌈√
N
⌉
) are the solutions of

the polynomial congruence f(x, y) ≡ 0 mod e, for f(x, y) = x(y +A)− 1 with A =
⌈√

N
⌉
− 1. Let (x0, y0) be

the solutions of the polynomial congruence f(x, y) ≡ 0 mod e, with x0 = min{r, s} and Nδ, Nγ be an upper
bounds for x0, y0 respectively then by implementing the idea of Boneh and Durfee as in [2] based on lattice

reduction techniques to our polynomial congruence we show that the attack works for δ <
3α+γ−2

√
γ(3α+γ)

3

when both x and y shifts are used and δ < α−γ
2 when only x−shifts are used. Later to improve the bound for

∗ Both authors thank the University Grants Commission(UGC) for the support of the UGC grant under UGC-MRP scheme.
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δ up to α − √αγ we implemented the sublattice based techniques by Boneh and Durfee under the condition

δ > α − γ(1 + α) and to improve the bound as δ <
2α−6γ+2

√
α2−αγ+4γ2

5 we implemented the sublattice based
techniques of J. Blömer and A. May as in [3], in this result the bound for δ is only slightly less then the bound
for δ as in the above method with sublattice based techniques by Boneh and Durfee but the advantage of this
method is that it requires lattices of smaller dimension than the above method. Further note that as Nγ is
depending on the prime difference p − q = Nβ , i.e., the value of Nγ decreases when the prime difference is
decreasing, the bound for δ increases when the prime difference is decreasing. Also it is observed that in a
practical implementation of our results, the above RSA attacks are ineffective if e is exceeding a particular
bound that is based on prime difference. In the above four implementations for δ denoted as δx,y, δx, δs and
δsd respectively, the attack bounds are described with an analysis of these bounds with respect to the prime
difference p− q, for p− q = Nβ and with respect to p− ρq, for ρ such that ρq is a better approximation for p.

2 Preliminaries

In this section we state a few basic results about lattices, lattice basis reduction and also Coppersmith’s method
and Howgrave-Graham theorems based on lattice reduction techniques.

Let u1, u2, ..., un ∈ Zm be linearly independent vectors with n ≤ m. Let L be a lattice spanned by <
u1, u2, ..., un > and b∗1, b

∗
2, ..., b

∗
n be the vectors obtained by applying the Gram-Schmidt process to the vec-

tors u1, u2, ..., un. The determinant of the lattice L is defined as det(L) :=
n∏
i=1

‖ b∗i ‖, where ‖ . ‖ denotes the

Euclidean norm on vectors. If L is a full rank lattice, means n = m then the determinant of L is equal to the
determinant of the n× n matrix whose rows are the basis vectors u1, u2, ..., un.

Properties of LLL Algorithm:
Let L be a lattice spanned by < u1, u2, ..., un >. Then the LLL (Lenstra-Lenstra-Lovász) algorithm for a given
< u1, u2, ..., un >, runs in polynomial time and produces a new basis < b1, b2, ..., bn > of L satisfying:

1. ‖ b∗i ‖2≤ 2 ‖ b∗i+1 ‖2, for all 1 ≤ i < n.

2. For all i, if bi = b∗i +
i−1∑
j=1

µjb
∗
j then | µj |≤ 1

2 for all j.

Theorem 1. Let L be a lattice and b1, b2, ..., bn be an LLL-reduction basis of L. Then ‖ b1 ‖≤ 2n/2det(L)1/n [2].

Theorem 2. Let L be a lattice spanned by < u1, u2, ..., un > and let < b1, b2, ..., bn > be the result of applying
LLL to the given basis. Suppose u∗min ≥ 1 where u∗min is a lower bound on the length of the shortest vector in

L. Then ‖ b2 ‖≤ 2n/2det(L)
1

n−1 [2].

An important application of lattice reduction found by Coppersmith in 1996 [5] is finding small roots of
low-degree polynomial equations. This includes modular univariate polynomial equations and bivariate integer
equations. In 1997 Howgrave-Graham [6] reformulated Coppersmith’s techniques and proposed the following
result and it shows that if the coefficients of h(x, y) are sufficiently small, then the equality h(x0, y0) = 0 holds
not only modulo N , but also over integers.

Theorem 3. (Howgrave-Graham): Let h(x, y) ∈ Z[x, y] be an integer polynomial that consists of at most
w monomials. Suppose that

1. h(x0, y0) = 0 mod em for some m where |x0| < X and |y0| < Y , and

2. ||h(xX, yY )|| < em√
w
.

Then h(x0, y0) = 0 holds over integers.

Now we present the definition of geometrically progressive matrices in the following.

Definition 1. Let M be an (a+ 1)b× (a+ 1)b matrix. The pair (i, j) corresponds to (bi+ j)− th column of M .
Similarly a pair (k, l) can be used to index (bk + l)− th row of M . Let C,D, c0, c1, c2, c3, c4, β be real numbers
with C,D, β ≥ 1. A matrix M is said to be geometrically progressive with parameters (C,D, c0, c1, c2, c3, c4, β)
if the following conditions hold for all i, k in [0, ..., a] and for all j, l in [1, ..., b] :
i) |M(i, j, k, l)| ≤ CDc0+c1i+c2j+c3k+c4l,
ii) M(k, l, k, l) = Dc0+c1k+c2l+c3k+c4l,
iii) M(i, j, k, l) = 0 whenever i > k or j > l,
iv) βc1 + c3 ≥ 0 and βc2 + c4 ≥ 0.
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Theorem 4. LetM be an (a+1)b×(a+1)b geometrically progressive matrix with parameters (C,D, c0, c1, c2, c3, c4, β),
and let B be a real number. Define

SB = {(k, l) ∈ 0, ...a× 1, ...b|M(k, l, k, l) = B}

and set w = |SB |. If L is the lattice defined by rows (k, l) ∈ SB of M , then

det(L) ≤ ((a+ 1)b)w/2(1 + C)w
2 ∏
(k,l)∈SB

M(k, l, k, l) [2].

Resultant of two bivaraite polynomials:
The resultant of two polynomials f(x, y) and g(x, y) with respect to the variable y, is defined as the determinant
of Sylvester matrix of f(x, y) and g(x, y) when considered as polynomials in the single indeterminate y. The
resultant is non-zero if and only if the two polynomials are algebraically independent . When the polynomials
are algebraically independent, the resultant yields a new polynomial h(x) such that if (x0, y0) is a root of both
f(x, y) and g(x, y) then h(x0) = 0.

Assumption 1. The two polynomials return by LLL algorithm are algebraically independent.

There is no theoretical proof for this one, but in practice most of the times achieved.

Result 1. Let N = pq ba an RSA modulus with q < p < 2q. Then the prime factors p and q satisfy the
following property [9] √

2
√
N

2
< q <

√
N < p <

√
2
√
N. (1)

3 Cryptanalysis of RSA and an Attack Bound Using Lattice-Based
Techniques

In this section we describe how small multiplicative inverse of (p−1) or (q−1) modulo e results a new weakness
for RSA by using the lattice reduction techniques as in [2] by Boneh-Durfee and in [3] by Blömer-May.
Let N = pq, q < p < 2q, e be the public encryption exponent and d be the private decryption exponent. The
public encryption exponent e and ϕ(N) are relatively prime so for e > p− 1 there exist unique r, s such that

(p− 1)r ≡ 1 mod e and (q − 1)s ≡ 1 mod e (2)

and note r, s are the multiplicative inverses of p − 1, q − 1 respectively. Now let f(x, y) = x(y + A) − 1
for A =

⌈√
N
⌉
− 1. If x0 = r then for y0 = p −

⌈√
N
⌉

we have f(x0, y0) ≡ 0 mod e and if x0 = s then

for y0 = q −
⌈√

N
⌉

we have f(x0, y0) ≡ 0 mod e by using (2). Now for |x0| ≤ Nδ, |y0| ≤ Nγ for some

δ and γ note Nγ = |ρ − 1|
√
N, 1 < ρ <

√
2 if y0 = p −

⌈√
N
⌉

and Nγ = |ρ − 1|
√
N, 1√

2
< ρ < 1 if

y0 = q −
⌈√

N
⌉

by using (1) (observe that p −
⌈√

N
⌉

mod e ≤ p −
⌈√

N
⌉
,
⌈√

N
⌉
− q mod e ≤

⌈√
N
⌉
− q and

(r, p−
⌈√

N
⌉

mod e) and (s,−(
⌈√

N
⌉
−q) mod e) are also solutions but in this case p−

⌈√
N
⌉

mod e = p−
⌈√

N
⌉

and
⌈√

N
⌉
− q mod e =

⌈√
N
⌉
− q as e > p− 1).

Now we consider the polynomial f(x, y) = x(y +A)− 1 and find (x0, y0) satisfying:
f(x0, y0) ≡ 0 mod e, for e = Nα, |x0| ≤ Nδ and |y0| ≤ Nγ , with Nγ = |ρ− 1|

√
N such that ρ is in the range{

1√
2
< ρ < 1, if x0 = s, y0 = q −

⌈√
N
⌉

1 < ρ <
√

2, if x0 = r, y0 = p−
⌈√

N
⌉
.

To solve for the above (x0, y0) we use lattice based techniques to our polynomial and the upper bounds
X = Nδ, Y = Nγ as in [2]:
For given a positive integer m, define the polynomials

gi,k = xifk(x, y)em−k and

hj,k = yjfk(x, y)em−k,

referred as the x-shifts and y-shifts respectively. Now define the lattice L spanned by the coefficients of the
vectors gi,k(xX, yY ) and hj,k(xX, yY ) for k = 0, ...,m, i = 0, ...,m − k and j = 0, ..., t. Note that the matrix
M of L is lower triangular and the coefficient of the leading monomial of gi,k(xX, yY ) is Xi+kY kem−k and also
the coefficient of the leading monomial of hi,k(xX, yY ) is XkY j+kem−k, so the determinant is

det(L) = eneXnXY nY
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where

ne =
m∑
k=0

m−k∑
i=0

(m− k) +
m∑
k=0

t∑
j=1

(m− k)

=
m(m+ 1)(m+ 2)

3
+
tm(m+ 1)

2
,

nX =
m∑
k=0

m−k∑
i=0

(i+ k) +
m∑
k=0

t∑
j=1

k

=
m(m+ 1)(m+ 2)

3
+
tm(m+ 1)

2
,

nY =
m∑
k=0

m−k∑
i=0

k +
m∑
k=0

t∑
j=1

(j + k)

=
m(m+ 1)(m+ 2)

6
+
t(m+ 1)(m+ t+ 1)

2

and the dimension of L is

w =
m∑
k=0

m−k∑
i=0

1 +
m∑
k=0

t∑
j=1

1

=
(m+ 1)(m+ 2)

2
+ t(m+ 1).

Applying the LLL algorithm we can obtain two short vectors b1, b2 and by using Theorem 1 & 2 this vectors
satisfies

‖ b1 ‖, ‖ b2 ‖≤ 2w/2det(L)
1

w−1 .

Now in order to apply Howgrave-Graham’s theorem, we should have

2
w
2 det(L)

1
w−1 <

em√
w
.

From this, we deduce

det(L) <
1

(2
w
2 )w−1

em(w−1) < emw

To satisfy the above inequality we need the following inequality

eneXnXY nY < emw.

Substitute all values and taking logarithms, neglecting the low order terms and after simplifying we get

m3

(
2α+ 2δ + γ

6

)
+ tm2

(
α+ δ + γ

2

)
+mt2

(γ
2

)
< α

(
1

2
m3 + tm2

)
This leads to

m2

(
−α+ 2δ + γ

6

)
+ tm

(
γ + δ − α

2

)
+ t2

(γ
2

)
< 0.

After fixing an m, the left hand side is minimized at t = α−δ−γ
2γ m. Putting this value we get the inequality

δ <
3α+ γ − 2

√
γ(3α+ γ)

3
.

From the vectors b1 and b2 we obtain two polynomials g1(x, y) and g2(x, y) over Z such that g1(x0, y0) =
g2(x0, y0) = 0. Let h(x) be the resultant polynomial of g1(x, y) and g2(x, y) with respect to y. By Assumption

1, h(x) is not identically zero. Now note if r or s are small such that |s| or |r| ≤ Nδ for δ <
3α+γ−2

√
γ(3α+γ)

3 then

(r, p−
⌈√

N
⌉
) or (s, q−

⌈√
N
⌉
) are also common solutions of g1(x, y) and g2(x, y), therefore either y0 = p−

⌈√
N
⌉

or y0 = q −
⌈√

N
⌉

is a root of g1(x0, y) for x0 = r or s, a solution for h(x) and with this knowledge of y0 the
factorization of N is known.
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Theorem 5. Let N = pq be an RSA modulus with q < p < 2q. Let e = Nα, X = Nδ and Y = Nγ ,

Nγ = |ρ−1|
√
N where ρ in the range

{
1 < ρ <

√
2, if x0 = r, y0 = p−

⌈√
N
⌉

1√
2
< ρ < 1, if x0 = s, y0 = q −

⌈√
N
⌉
,

and r, s are the multiplicative

inverses of p − 1, q − 1 modulo e respectively. Suppose that |x0| ≤ X and |y0| ≤ Y then one can factor N in
polynomial time if

δ <
3α+ γ − 2

√
γ(3α+ γ)

3
.

Proof. Follows from the above argument and the LLL lattice basis reduction algorithm operates in polynomial
time [7].

Corollary 1. If the lattice basis reduction algorithm is implemented only using x−shifts and repeating the
above argument then we can factorize N whenever

δ <
α− γ

2
.

Example 1. Consider the 500-bit integer primes p, q with q < p < 2q,
p=170012412412228374002637939365519830443328409208612957896658273619226759280

9349109766540184651808314301773368255120142018434513091770786106657055179759 and
q=163669530394807093500659484841379957610832102302153239474164568404806689820

2337277441635046162952078575443342063780035504608628272942696526664263794849.
ThenN=2782585170079769062918329910316787739378614130731076762352269011625498885922423284650282977151279067225907184247826345726495657669

99455593549454620693622688394500288852011908015225770521720915088650416587150349934694039019945761261530500516111094464262815422498738078576927

5110281016352359905193261391 and β ≈ 0.4952739 where Nβ = p− q, the prime difference.
For the public encryption exponent e=221016136135896886203429321175175779576326931971196845265655755704994787065215384269650224004

73508085923053787316561846239648670193020219386541717336853,
we have the private decryption exponent d=216201370580541988693840426730298193325865077817631810740453077605631407659496761063845

8434785818513310159374909618692760679322173549277293291619261105938581620978897815237996653745248363714823777142661558419180059837734262872817

60891038992603481181995446154263957587057164886397572862071123797744253.

The multiplicative inverses of p−1 and q−1 modulo e are r = 13 and s=4968276086601860948375689811877277322092297400304711

022160255819913121429929859233226176582706704776055610600183947453151776198378126007566405809480544 respectively.
Now the solutions x0 = min{r, s} = 13 and y0 = p−

⌈√
N
⌉
=32015863223198970159591345105407983023750823131370266159671026480

456254022996550014121987128440349329667241659248764234628857989720083312382248332471.
For γ ≈ 0.49429, the RSA will be insecure if δ < 0.00473936615773426 when we use both x−shifts and y−shifts
and δ < 0.00472256612547278 if we use only x−shifts. The solution x0 = 13 = N0.00370765164073960 < Nδ for
the both the cases. So for this x0 we can find the factors p, q of N by using LLL algorithm in both the cases
but note that for sufficiently large primes p and q, the Corollary 1 holds for any positive integer m.
For m = 2, X = 15, Y=3201586322319897015959134510540798302375082313137026615967102648045625402299655001412198712844034932966724165924

8764234628857989720083312382248332471, the upper bounds for x0 and y0 respectively and
A=166810826089908476986678804854979032140953326895475931280691170971181133878635255975241819752336796497210612659587137778380565510205070279

4274806847287, apply LLL algorithm to the matrix M formed by the row vectors [e2, 0, 0, 0, 0, 0], [0, Xe2, 0, 0, 0, 0],
[−e,XAe,XY e, 0, 0, 0], [0, 0, 0, X2e2, 0, 0],[0,−Xe, 0, X2ae,X2Y e, 0],[1,−2AX,−2XY,A2X2, 2AX2Y,X2Y 2].
Let b1 = [i0, i1, i2, i3, i4, i5] and b2 = [j0, j1, j2, j3, j4, j5] be the first two short vectors and g1(x, y) = c0 + c1x+
c2xy + c3x

2 + c4x
2y + c5x

2y2 and g2(x, y) = d0 + d1x + d2xy + d3x
2 + d4x

2y + d5x
2y2 be two polynomials

where c0 = i0
1 , c1 = i1

X , c2 = i2
XY , c3 = i3

X2 , c4 = i4
X2Y , c5 = i5

X2Y 2 and d0 = j0
1 , d1 = j1

X , d2 = j2
XY , d3 =

j3
X2 , d4 = j4

X2Y , d5 = j5
X2Y 2 . If h(x) = res(g1(x, y), g2(x, y)), then for the solution x = x0 = 13 of h(x) we have

y = y0 = p−
⌈√

N
⌉

is a solution for g1(13, y) and with the knowledge of y0 we can find the prime factors p and
q.

Note that this RSA attack does not depend on the private decryption exponent d. Sometimes our attack
may work if d is exceeding the bound given by Boneh and Durfee. For a given e = Nα and for d = Nδ′ , p −
q = Nβ , the prime difference, the Boneh-Durfee’s bound for δ′(in the first result) is given by δ′< 5

6 + 2
3β −

1
3

√
8(3α− 1)β + 16β2 − 6α+ 1. Therefore the Boneh-Durfee’s bound for d = Nδ′ for a given α, β in example

1 is such that δ′ < 0.5029 but note that in this example d = Nδ′ ≈ N0.996307 exceeding the bound given by
Boneh and Durfee.

3.1 Refined Attack Bound Using Sub-Lattice Based Techniques

Boneh and Durfee [2] improved their result by using sub-lattice techniques. Now we implement their idea to
our polynomial for improving the result.
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Let My be the portion of the matrix M with rows corresponding to the y-shifts hl,k and columns corresponding
to variable of the form xuyv, v > u and take the parameter t as twice the value of t in the above lattice based
technique i.e., t = α−δ−γ

γ m.

Define the matrix M1 as follows: Take every row gi,k of M corresponding to the x−shifts and take only those
rows hl,k of M corresponding to the y−shifts whose diagonal entry is less than or equal to em. Let L1 be a
lattice described by M1. Then L1 is a sublattice of L, so short vector of L1 will be in L. Now perform the
Gaussian elimination to the first (m+1)(m+2)/2 rows of M that is the those rows corresponding to the xshifts
to set the off-diagonal entries of every row to zero, then there is a unitary matrix A over R such that M2 = AM1

is a matrix whose upper left block ∆ is a diagonal matrix of order (m + 1)(m + 2)/2, lower right block M ′y
consists selected rows of My and remaining upper right block and lower left block of M2 are zero blocks. Since
A is unitary, the determinant of the lattice L2 described by M2 is equal to det(L1) and the det(L2)=det(∆) ·
det(L′y) where L′y be the lattice induced by M ′y.

Let w′ be the dimension of L′y. First we compute w′ by setting S = {(k, l) ∈ {0, ...,m}×{1, ..., t}|M(k, l, k, l) ≤
em} and then w′ = |S|. The matrixMy is a geometrically progressive matrix with parameter choice (m2m, N, αm,
δ+γ, γ−1,−α, 1, b) for some b. Note that the first three conditions of Definition 1 hold. To satisfy the fourth con-
dition, the parameter b should satisfy b(δ+γ)−α ≥ 0 and b(γ−1)+1 ≥ 0 together and thus we get the constraint
δ > α−γ(1+α), which in turn gives a possible value of b as b = 1

1−γ . We have My(k, l, k, l) = Nαm+(δ−α+γ)k+γl

for k = 0, ...,m and l = 1, ..., t. Since (k, l) ∈ S only if Nαm+(δ−α+γ)k+γl < Nαm, so for l ≤ α−δ−γ
γ k we get this

inequality. Thus

w′ = |S| =
m∑
k=0

⌊α− δ − γ
γ

k
⌋

=
α− δ − γ

2γ
m2 + o(m2)

and the dimension of the lattice L2 is

w =
(m+ 1)(m+ 2)

2
+ w′ =

(
1

2
+
α− δ − γ

2γ

)
m2 + o(m2).

Since the lattice L′y defined by the rows (k, l) ∈ S of My and by theorem 4
we have

detL′y ≤
(

(m+ 1)
⌊α− δ − γ

γ

⌋
m

)w′
2

(1 +m2m)(w
′)2

∏
(k,l)∈S

My(k, l, k, l).

As
(

(m+ 1)
⌊
α−δ−γ

γ

⌋
m
)w′

2

(1 + m2m)(w
′)2 is a function of only δ(but not of N) and

∏
(k,l)∈S

My(k, l, k, l) =

m∏
k=0

⌊
α−δ−γ

γ k
⌋∏

l=0

Nαm+(δ−α+γ)k+γl, we have

detL′y = N

(
2α2−αγ−γ2−(α+2γ)δ−δ2

6γ

)
m3+o(m3)

.

Now as det(∆) = eneXnxY ny pertaining to just x−shifts, repeating the argument as in the above lattice based

strategy we have det(∆) = N( 2α+2δ+γ
6 )m3+o(m2), so then the condition det(L1)=det(∆) · det(L′y) < emw gives

the bound
δ < α−√αγ.

Theorem 6. Let N, p, q, e,X, Y, x0, y0, δ, γ and ρ be defined in Theorem 5. Suppose that |x0| ≤ X and |y0| ≤ Y ,
then RSA is insecure if

α− γ(1 + α) < δ < α−√αγ.

Proof. Follows from the above argument and the LLL lattice basis reduction algorithm operates in polynomial
time [7].

Now we follow the idea of Blömer-May in [3] using sub-lattice techniques and this approach does not improve
the above bound for δ and also slightly less than to this bound but this method requires lattice of smaller
dimension than the above approach.

Theorem 7. Let N, p, q, e,X, Y, x0, y0, δ, γ and ρ be defined in Theorem 5. Suppose that |x0| ≤ X and |y0| ≤ Y ,
then RSA is insecure if

δ <
2α− 6γ + 2

√
α2 − αγ + 4γ2

5
.
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Proof. This proof is similar to the above argument but determinant of lattice will be different here.
Unlike the above remove the some rows corresponding to the both x-shifts and y-shifts of M in order to obtain
a square matrix and to apply Howgrave’s theorem by following the same idea of Blömer-May in [3] and denote
the final constructed matrix by MB and corresponding lattice LB .
So the new latticeMB formed by removing the row vectors corresponding to the x−shift polynomials gi,k(xX, yY )

if i + k = 0, 1, ...,m − t − 1, the y-shift polynomials hj,k(xX, yY ) if k =



0, ...,m− t if j = 1

0, ...,m− t+ 1 if j = 2
...

0, ...,m− 2 if j = t− 1

0, ...,m− 1 if j = t

and

remove columns in order to form a lower triangular square matrix .

Then the dimension of the lattice LB = (m+ 1)(t+ 1) and the diagonal elements of the matrix MB will be
Xmem, XmY em−1, ...,XmY m,
Xm−1em, Xm−1Y em−1, ...,Xm−1Y m−1e,
...,
Xm−tem, Xm−tY em−1, ...,Xm−tY m−tet (for x-shifts) and
XmY m+t,
XmY m+t−1, Xm−1Y m+t−2e,
...,
XmY m+1, Xm−1Y me, ...,Xm−t+1Y m−t+2et−1 (for y−shifts).
Multiplying the diagonal elements and neglecting the lower order terms, we need the condition

Xtm2−mt22 + t3

6 Y
tm2

2 + t3

6 < e
tm2

2 .

Putting the values of e = Nα, X = Nδ, Y = Nγ and t = τm, we have the required condition(
δ

6
+
γ

6

)
τ2 − 1

2
δτ +

(
δ +

γ

2
− α

2

)
< 0.

The left hand side is minimized at the value τ = δ
2
3 (δ+γ)

. Putting this value of τ in the previous inequality we

get the bound for δ is

δ <
2α− 6γ + 2

√
α2 − αγ + 4γ2

5
.

3.2 Analysis of Attack Bounds

As it is known that, for p− q < N
1
4 , then RSA is insecure by Fermat’s Factorization technique, in this section

we first analyze all the above attack bounds on δ in the range N
1
4 < p − q < N

1
2√
2

. We proceed by denoting

the δ obtaining using both x and y shifts as in Theorem(5) by δx,y, the δ obtaining using only x−shifts as in
Corollary(1) by δx, the δ obtaining using sublattice based techniques as in Theorem(6) by δs and the δ obtaining
using sublattice based techniques with lower dimension as in Theorem(7) by δsd . Let p−q = Nβ for 1

4 < β < 1
2 ,

then we have p −
⌈√

N
⌉
,
⌈√

N
⌉
− q < Nβ as q <

⌈√
N
⌉
< p. As y0 = q −

⌈√
N
⌉

or p −
⌈√

N
⌉
, we may take

Y = Nβ , 14 < β < 1
2 and for Y = Nβ the attack bound for δ in the above results are given as:

δx <
α− β

2
for any m ≥ 1. (3)

δx,y <
3α+ β − 2

√
β(3α+ β)

3
for t =

α− δ − β
2β

m. (4)

α− β(1 + α) < δs < α−
√
αβ for t =

α− δ − β
β

m. (5)

δsd <
2α− 6β + 2

√
α2 − αβ + 4β2

5
for t =

δ
2
3 (δ + β)

m. (6)

In Table 1, we represent how the bound for δ increase when the prime difference Nβ is decreasing from N
1
2 to

N
1
4 for a given public key exponent e = Nα in the all above cases (3),(4),(5) and (6).
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α β δ
δx δx,y δs δsd

0.501 ≈ 0.50 0.0005 0.0005001873 (0, 0.0005002497) 0.0005001874
0.45 0.0255 0.0260200003 (0, 0.0261842462) 0.0260339152
0.40 0.0505 0.0526881570 (0, 0.0533394142) 0.0528096268
0.35 0.0755 0.0807826527 (0, 0.0822518656) 0.0812390932
0.30 0.1005 0.1106939731 (0.0570000001, 0.1133145605) 0.1118998342
0.26 0.1205 0.1363082232 (0.1174, 0.1400844974) 0.1385650655

0.55 ≈0.50 0.025 0.0254519548 (0, 0.0255955759) 0.0254626986
0.45 0.05 0.0519259301 (0, 0.0525062814) 0.0520215047
0.40 0.075 0.0796409907 (0, 0.0809584240) 0.0800000000
0.35 0.1 0.1088933156 (0.0075000001, 0.1112517806) 0.1098386676
0.30 0.125 0.1400980486 (0.0850000001, 0.1437980797) 0.1421347195
0.26 0.145 0.1668676552 (0.147, 0.1718465919) 0.1702670394

0.75 ≈0.50 0.125 0.1349307066 (0, 0.1376275643) 0.1358898943
0.45 0.15 0.1651530771 (0, 0.1690524980) 0.1669397989
0.40 0.175 0.1969579906 (0.0499999999, 0.2022774424) 0.2
0.35 0.2 0.2307071990 (0.1375, 0.2376524617) 0.2355277766
0.30 0.225 0.2669048105 (0.225, 0.2756583509) 0.2740658617
0.26 0.245 0.2981089219 (0.295, 0.3084119566) 0.3074745686

1 ≈0.50 0.25 0.2847495629 (0, 0.2928932188) 0.2898979485
0.45 0.275 0.3193376137 (0.1, 0.3291796067) 0.3264761515
0.40 0.3 0.3558730806 (0.2, 0.3675444679) 0.3654211490
0.35 0.325 0.3947864057 (0.3, 0.4083920216) 0.4070831300
0.30 0.35 0.4366750419 (0.4, 0.4522774424) 0.4518252056
0.26 0.37 0.4728987047 (0.48, 0.4900980486) 0.4900746199

Table 1: Bound for δ corresponding to the values of α and β in all cases.

In Figure 1 we plot the bounds for δs, δsd , δx,y and δx for a given e in different values of β i.e., β = 0.5, 0.45, 0.35
and 0.26. Within that bounds the RSA cryptosystem is insecure and note that the region for which RSA is
insecure increases when the value of β decreases.

Fig.1. The region for δ and α values for which RSA is insecure for different values of β.
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From the above observations it is noted for a given α if δ is beyond the upper bound δs then the RSA is
secure with respect to all the above attacks and if δ is within the bound for δx and beyond the lower bound for
δs then RSA is insecure with respect to all the the above attacks and for any δ within any of the four attack
bounds corresponding attack may be implemented. Further it is also observed that δ always lies beyond the
attack bounds for certain values of the public encryption exponent e and such inefficient lower bound of e for
each attack related to the prime difference are listed in Table 2 for e = Nα and L(α), denoting the lower bound
for inefficient e for the above attacks using lattice based techniques.

N β L(α)
(≈) Attack with x-shifts Attack with x and y shifts Attack with sublattice Attack with sublattice based

based techniques techniques with lower dimension
1000 bits 0.50 0.5025 0.5025 0.5025 0.5025

0.45 0.5520 0.5560 0.5600 0.5570
0.35 0.66 0.71 0.72 0.7130
0.26 0.75 0.9120 0.9675 0.9670

2000 bits 0.50 0.5013 0.5013 0.5013 0.5013
0.45 0.5510 0.5550 0.5590 0.5560
0.35 0.6520 0.70 0.72 0.71
0.26 0.7450 0.91 0.9645 0.9640

4000 bits 0.50 0.5010 0.5010 0.5010 0.5010
0.45 0.5505 0.5545 0.5570 0.5550
0.35 0.6510 0.6990 0.7160 0.7095
0.26 0.7410 0.9090 0.9640 0.9435

Table 2: List of L(α) corresponding to β and no.of bits in N .

In such cases we proceed to improve the attack bounds for δ so that the inefficient e may turn efficient for
the attacks with lattice based techniques by considering the same polynomial congruence with N replaced by
ρN or N

ρ for some appropriate ρ, 1 ≤ ρ ≤ 2 such that ρq ≈ p and is based on the following Theorem.

Theorem 8. Let |p− ρq| ≤ Nγ′ where γ′ < 1
2 and 1 ≤ ρ ≤ 2. Then we have |p−

√
ρN |, |q −

√
N
ρ | < Nγ′ [12].

To improve the bound for δ, we consider the polynomial congruence f(x, y) ≡ 0 mod e in which the upper
bound Nγ′ for the solution y = y0 is depending on the value |p− ρq|, rather then the prime difference p− q for

f(x, y) = x(y +A)− 1, with A =

{⌈√
ρN
⌉
− 1, if min{r, s} = r⌈√

N
ρ

⌉
− 1, if min{r, s} = s.

Then the solutions x = x0 and y = y0 for the polynomial congruence f(x, y) ≡ x(y+A)− 1 mod e are given as

x0 = min{r, s} and y0 =

{
p−

⌈√
ρN
⌉
, if min{r, s} = r

q −
⌈√

N
ρ

⌉
, if min{r, s} = s.

In [13], it has been studied how a few MSBs of p or q can be found from the knowledge of N only, where
N = pq, p and q are primes of same size and this knowledge of most significant bits(MSBs) of p or q can provide
approximation of ρ. Otherwise one may try to guess ρ for different values (that are computationally feasible)
to mount the attack. To mount the attack we establish the attack bounds for δ by repeating the argument for
|x0| ≤ Nδ and |y0| ≤ Nγ′ , γ′ ≤ 1

2 in Corollary 1, Theorem 5, Theorem 6 and Theorem 7. Note for the above
attack bounds thus obtained depending on appropriate ρ.

Example 2. Let p=202578011750906281247094079898482654152352800202967795174672010161491336804628653

58574779284875457806030124268550700030014115264772567435253175260469958709084217 and
q=106620006184687516445838989420254028501238315896298839565616847453416493055067712

41355146992039714634752696983447736857902165928827667136006663483150507256156183

be two 533 and 532 bit integer primes respectively with q < p < 2q.
ThenN=21598868865763328088813726151452289600419716598304132287130238304022057943598518945824934738913551301466581746670813928474835987795

788053774051346057802186135547718470805647762369215305969765030566801742108218670157518254139618999751340345127999866829966392864624231228730005

5328685941416182541762052991358334639452263711.
For the public encryption exponent e=20357048760851917713038785834633594998268127430246505631122228265727831120341504227605379168525

574184831255713809622106188803980126100142376033417564441502906816081028618399597927513832190649042334179538898854354716330533894180986228498033

07996837184668882334422884965338353654061812322328244014873765, the multiplicative inverses of p − 1 and q − 1 modulo e are
r=15863205922290019006404019782584099034358123662465732469953170767501769225883755689521518192482725595496589763798408382380531132272292363326

287321378672467138457035544884169683913208414707057169622458032116333863771368888776619499115430592596931321075625958870066127685434042170604888

47920706636452261,
s=74582364574556004740075744770000572387674657365757152371643759617457164738561374658743675673265713649576184735671436756173564375674365716349

705193 respectively and e ≈ N0.937484971166478.
Taking ρ = 1.9, we get |p − ρq| = N0.0814475914542542436619469358. For γ′ ≈ 0.082, the bound for δ corre-
sponds to the results given in Corollary 1 and Theorems 5 & 7 are 0.428018689856112, 0.640973585517601

9
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and 0.641467151800484 respectively and note the solution x = x0 = s ≈ N0.455376075838353 is exceeding the
bound given in Corollary 1(The method given in the Theorem 6 is not applicable in this case as we have

α− γ(1 + α) < α−√αγ only if
√
γ 1+

√
α√
α

> 1, but in this case
√
γ 1+

√
α√
α

< 1). By using the lattice parameters

m = 3 and t = 1 we can factor the RSA modulus N in both cases corresponding to the Theorems 5 & 7. If

|y0| = |q −
⌈√

N
ρ

⌉
|, then for the polynomial congruence x(y +A)− 1 ≡ 1 mod e, where A =

⌈√
N
ρ

⌉
− 1 and for

β ≈ 0.49942206, the solution x = x0 is exceeding the bound given in (3),(4),(5) and (6).

4 Conclusion

In this paper it is shown that RSA is insecure if the multiplicative inverse of p− 1 or q − 1 modulo the public
encryption exponent e is small, that is less than or equal to Nδ, for some small δ. This is established by using the
lattice based techniques implemented by the polynomial congruence f(x, y) ≡ 0 mod e for f(x, y) = x(y+A)−1
with A =

⌈√
N
⌉
−1. Lattice based techniques were implemented first using both x and y shifts then implemented

using only x−shifts. These were also implemented using sublattice based techniques and sublattice based
techniques with lower dimension and in each of the above four implementation for δ denoted as δx,y, δx, δs and
δsd respectively, the attack bounds were described. An analysis of these bounds with respect to the prime
difference p− q, for p− q = Nβ and with respect to p− ρq, for ρ such that ρq is a better approximation for p
are also described.
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Abstract: In this paper, we gave an attack on RSA Cryptosystem when ϕ(N) has small multiplicative
inverse modulo e and the prime sum p + q is of the form p + q = 2nk0 + k1, where n is a given
positive integer and k0 and k1 are two suitably small unknown integers using sublattice reduction
techniques and Coppersmith’s methods for finding small roots of modular polynomial equations.
When we compare this method with an approach using lattice based techniques, this procedure
slightly improves the bound and reduces the lattice dimension. Employing the previous tools, we
provide a new attack bound for the deciphering exponent when the prime sum p + q = 2nk0 + k1

and performed an analysis with Boneh and Durfee’s deciphering exponent bound for appropriately
small k0 and k1.

Keywords: RSA; Cryptanalysis; lattices; LLL algorithm; Coppersmith’s method
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1. Introduction

RSA Cryptosystem [1] is the first public key cryptosystem invented by Ronald Rivest, Adi Shamir
and Leonard Adleman in 1977. The primary parameters in RSA are the modulus N = pq, which
is the product of two large distinct primes, a public exponent e such that gcd(e, ϕ(N)) = 1 and a
private exponent d, the multiplicative inverse of e modulo ϕ(N). In this system the encryption and
decryption are based on the fact that for any message m in ZN , med = m mod N. The security of
this system depends on the difficulty of finding factors of a composite positive integer, which is a
product of two large primes. In 1990, M.J.Wiener [2] was the first one to describe a cryptanalytic
attack on the use of short RSA deciphering exponent d. This attack is based on continued fraction
algorithm which finds the fraction t

d , where t = ed−1
ϕ(n) in a polynomial time when d is less than N0.25 for

N = pq and q < p < 2q. Using lattice reduction approach based on the Coppersmith techniques [3] for
finding small solutions of modular bivariate integer polynomial equations, D. Boneh and G. Durfee [4]
improved the wiener result from N0.25 to N0.292 in 2000 and J. Blömer and A. May [5] has given an RSA
attack for d less than N0.29 in 2001, which requires lattices of dimension smaller than the approach
by Boneh and Durfee. In 2006, E. Jochemsz and A. May [6], described a strategy for finding small
modular and integer roots of multivariate polynomial using lattice-based Coppersmith techniques and
by implementing this strategy they gave a new attack on an RSA variant called common prime RSA.

In the paper [7], first we described an attack on RSA when ϕ(N) has small multiplicative inverse k
of modulo e, the public encryption exponent by using lattice and sublattice based techniques. Let N =

pq, q < p < 2q, p− q = Nβ and e = Nα > p + q. As (e, ϕ(N)) = 1, there exist unique r, s such that
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(p− 1)r ≡ 1(mod e) and (q− 1)s ≡ 1(mod e). For k = rs(mod e), kϕ(N) ≡ 1(mod e) and define
g(x, y) = x(y + B)− 1 where B = N + 1−

⌈
2
√

N
⌉
. Then the pair (x0, y0) = (k,−((p + q)−

⌈
2
√

N
⌉
))

is a solution for the modular polynomial equation g(x, y) ≡ 0(mod e). Now applying the lattice based
techniques given by Boneh-Durfee in [4] using x, y shifts and using only x shifts to the above modular

polynomial equation, we get the attack bounds for δ, |k| ≤ Nδ are δ <
3α+β−2

√
β(3α+β)

3 and δ < α−β
2 ,

respectively. Also, we improved the bound for δ up to α−
√

αβ by implementing the sublattice based
techniques given by Boneh and Durfee in [4] under the condition δ > α− β(1 + α) and improved the

bound for δ up to δ <
2α−6β+2

√
α2−αβ+4β2

5 by implementing the sublattice based techniques with lower
dimension given by J. Blömer and A. May in [5]; this bound is slightly less than the above bound but
this method requires lattices of smaller dimension than the above method. All these attack bounds are
depending on the prime difference p− q = Nβ and α−

√
αβ is the maximum upper bound for δ.

Later in paper [7], we described that, for β ≈ 0.5, the maximum bound for δ may be improved if
the prime sum p + q is in the form of the composed sum p + q = 2nk0 + k1 where n is a given positive
integer and k0 and k1 are two suitably small unknown integers. Define the polynomial congruence
f (x, y, z) ≡ 0(mode) for

f (x, y, z) =

{
(N + 1)x + xy + (2n)xz− 1 if |k0| ≤ |k1|
2n′x(N + 1) + xy + 2n′xz− 2n′ if |k1| ≤ |k0|

where 2n′ is an inverse of 2n mod e. By using lattice based techniques to the above polynomial

congruence, the attack bound for δ is such that δ < 1
2 α − 1

2 γ1 +
1

16 γ2 − 1
16

√
48(α− γ1)γ2 + 33γ2

2
where Nγ1 , Nγ2 are the upper bounds for max{|k0|, |k1|}, min{|k0|, |k1|} respectively.

Now, in this paper, we slightly improved the above bound by using the sub-lattice based
techniques given by J. Blömer, A. May in [5] to the above polynomial congruence and this
method requires lattice of smaller dimension than the above method. The new bound on δ is
1
2 α− 1

2 γ1 − 1
6

√
6(α− γ1)γ2 + 3γ2

2 and showed that this is a little bit greater than the former bound
graphically. Note that this new attack bound is also an attack bound for the deciphering exponent d.

2. Preliminaries

In this section we state basic results on lattices, lattice basis reduction, Coppersmith’s method and
Howgrave-Graham theorem that are based on lattice reduction techniques.

Definition 1. Let b1, b2, ..., bn ∈ Rm be a set of linearly independent vectors. The lattice L generated by
b1, b2, ..., bn is the set of linear combinations of b1, b2, ..., bn with coefficients in Z.

A basis for L is any set of independent vectors that generates L. The dimension of L is the number of vectors
in a basis for L.

Definition 2. Let L be a lattice of dimension n and let b1, b2, ..., bn be a basis for L. The fundamental domain
for L corresponding to this basis is the set

F (b1, b2, ..., bn) = {t1b1 + t2b2 + ... + tnbn : 0 ≤ ti < 1} [8].

Definition 3. Let L be a lattice of dimension n and letF be a fundamental domain for L. Then the n-dimensional
volume of F is called the determinant of L. It is denoted by det(L) [8].

Remark 1. If L is a full rank lattice, which means n = m then the determinant of L is equal to the absolute
value of the determinant of the n× n matrix whose rows are the basis vectors b1, b2, ..., bn.
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In 1982, A. K. Lenstra, H. W. Lenstra, Jr. and L. Lovasz [9] invented the LLL lattice based reduction
algorithm to reduce a basis and to solve the shortest vector problem. The general result on the size of
individual LLL-reduced basis vectors is given in the following Theorem.

Theorem 1. Let L be a lattice and b1, b2, ..., bn be an LLL-reduction basis of L. Then

‖ b1 ‖≤‖ b2 ‖≤ ... ‖ bi ‖≤ 2
n(n−1)

4(n+1−i) det(L)
1

n+1−i

for all 1 ≤ i ≤ n [10].

An important application of lattice reduction found by Coppersmith in 1996 [3] is finding
small roots of low-degree polynomial equations. This includes modular univariate polynomial
equations and bivariate integer equations. In 1997 Howgrave-Graham [11] reformulated Coppersmith’s
techniques and proposed a result which shows that if the coefficients of h(x, y) are sufficiently small,
then the equality h(x0, y0) = 0 holds not only modulo N, but also over integers. The generalization
of Howgrave-Graham result in terms of the Euclidean norm of a polynomial h(x1, x2, ..., xn) =

∑ ai1...in xi1
1 ...xin

n is defined by the Euclidean norm of its coefficient vector i.e., ||h(x1, x2, ..., xn)|| =√
∑ a2

i1...in given as follows:

Theorem 2. (Howgrave-Graham): Let h(x1, x2, ..., xn) ∈ Z[x1, x2, ..., xn] be an integer polynomial that
consists of at most ω monomials. Suppose that

1. h
(

x(0)1 , x(0)2 , ..., x(0)n

)
≡ 0 mod em for some m where |x(0)1 | < X1, |x(0)2 | < X2 . . . |x(0)n | < Xn, and

2. ||h(x1X1, x2X2, ..., xnXn)|| < em
√

ω
.

Then h(x1, x2, ..., xn) = 0 holds over the integers.

Definition 4. The resultant of two polynomials f (x1, x2, . . . , xn) and g(x1, x2, . . . , xn) with respect to the
variable xi for some 1 ≤ i ≤ n, is defined as the determinant of Sylvester matrix of f (x1, x2, . . . , xn) and
g(x1, x2, . . . , xn) when considered as polynomials in the single indeterminate xi, for some 1 ≤ i ≤ n.

Remark 2. The resultant of two polynomials is non-zero if and only if the polynomials are algebraically
independent.

Remark 3. If
(

x(0)1 , x(0)2 , . . . , x(0)n

)
is a common solution of algebraically independent polynomials

f1, f2, . . . , fm for m ≥ n, then these polynomials yield g1, g2, . . . , gn−1 resultants in n − 1 variables and
continuing so on the resultants yield a polynomial t(xi) in one variable with xi = x(0)i for some i is a solution of
t(xi). Note the polynomials considered to compute resultants are always assumed to be algebraically independent.

3. An Attack Bound Using Sublattice Reduction Techniques

In this section, an attack bound for a small multiplicative inverse k of ϕ(N) modulo e when the
prime sum p + q is of the form p + q = 2nk0 + k1, where n is a given positive integer and k0 and k1 are
two suitably small unknown integers using sublattice reduction techniques is described.

In a previous paper [7], we proposed an attack on RSA when ϕ(N) has small multiplicative
inverse modulo e and the prime sum p + q is of the form p + q = 2nk0 + k1, where n is a given positive
integer and k0 and k1 are two suitably small unknown integers using lattice reduction techniques.

For 2n′ is an inverse of 2n mod e, define f (x, y, z)=

{
(N + 1)x + xy + (2n)xz− 1 if |k0| ≤ |k1|
2n′x(N + 1) + xy + 2n′xz− 2n′ if |k1| ≤ |k0|.

If |k0| ≤ |k1|, then (k,−k1,−k0) is a solution and if |k1| ≤ |k0| then (k,−k0,−k1) is a solution for
the modular polynomial equation f (x, y, z) ≡ 0(mod e).
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Now define the set Mk =
⋃

0≤j≤t
{xi1 yi2 zi3+j|xi1 yi2 zi3 is a monomial of f m and xi1 yi2 zi3

lk is a monomial

of f m−k}, where l is a leading monomial of f and define the shift polynomials as

gk,i1,i2,i3(x, y, z) =
xi1 yi2 zi3

lk ( f ′(x, y, z))kem−k, for k = 0, ..., m, xi1 yi2 zi3 ∈ Mk \Mk+1

and f ′ = a−1
l f mod e for the coefficient al of l. For 0 ≤ k ≤ m, divide the above shift polynomials

according to t = 0 and t ≥ 1. Then for t = 0, the shift polynomials g(x, y, z) are

g(x, y, z) =

{
zi3 ( f (x, y, z))kem−k, for i1 = i2 = k, i3 = 0
xi1−kzi3 ( f (x, y, z))kem−k, for k ≤ m− 1, i1 = k + 1, ..., m, i2 = k, i3 = 0, ..., (i1 − i2).

and for t ≥ 1, the shift polynomials h(x, y, z) are

h(x, y, z) =

{
zi3 ( f (x, y, z))kem−k , for i1 = i2 = k, i3 = 1, ..., t

xi1−kzi3 ( f (x, y, z))kem−k , for k ≤ m− 1, i1 = k + 1, ..., m, i2 = k, i3 = (i1 − i2) + 1, ..., (i1 − i2) + t.

Let L be the lattice spanned by the coefficient vectors g(xX, yY, zZ) and h(xX, yY, zZ) shifts with
dimension ( 1

6 m3 + m2 + 11
6 m + 1) +

(
1
2 (m

2 + m)t + (m + 1)t
)

[7]. Let M be the matrix of L with each
row is the coefficients of the shift polynomial

g− shifts



em, xem, xzem, x2em, x2zem, x2z2em, ..., xmem, xmzem, ..., xmzmem,
f em−1, x f em−1, xz f em−1, ..., xm−1 f em−1, xm−1z f em−1, ..., xm−1zm−1 f em−1,
...
f m−1e, x f m−1e, xz f m−1e,
f m,

h− shifts



zem, ...ztem, xz2em, ..., xz1+tem, ..., xmzm+1em, ..., xmzm+tem,
z f em−1, ...zt f em−1, xz2 f em−1, ..., xz1+t f em−1, ..., xm−1zm f em−1, ..., xm−1z(m−1)+t f em−1,
...
z f m−1e, ..., zt f m−1e, xz2 f m−1e, ..., xz1+t f m−1e,
z f m, ..., zt f m

and each column is the coefficients of each variable (in shift polynomials)

(first(
1
6

m3 + m2 +
11
6

m + 1)columns)



1, x, xz, x2, x2z, x2z2, ..., xm, xmz, ..., xmzm,
xy, x2y, x2yz, x3y, x3yz, x3yz2, ..., xmy, xmyz, ..., xmyzm−1,
...
xm−1ym−1, xmym−1, xmym−1z,
xmym,

(remaining
(

1
2
(m2 + m)t + (m + 1)t

)
columns)



z, ..., zt, xz2, ..., xz1+t, ..., xmzm+1, ..., xmzm+t,
xyz, ..., xyzt, x2yz2, ..., x2yz1+t, ..., xmyzm, ..., xmyz(m−1)+t,
...
xm−1ym−1z, ..., xm−1ym−1zt, xmym−1z2, ..., xmym−1z1+t,
xmymz, ..., xmymzt.
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As xy is the leading monomial in f (x, y, z) with coefficient 1, the diagonal elements in the matrix
M are

g− shifts



em, Xem, XZem, X2em, X2Zem, X2Z2em, ..., Xmem, XmZem, ..., XmZmem,
XYem−1, X2Yem−1, X2YZem−1, ..., XmYem−1, XmYZem−1, ..., XmYZm−1em−1,
...
Xm−1Ym−1e, XmYm−1e, XmYm−1Ze,
XmYm,

h− shifts



Zem, ..., Ztem, XZ2em, ..., XZ1+tem, ..., XmZm+1em, ..., XmZm+tem,
XYZem−1, ..., XYZtem−1, X2YZ2em−1, ..., X2YZ1+tem−1, ..., XmYZmem−1, ..., XmYZ(m−1)+tem−1,
...
Xm−1Ym−1Ze, ..., Xm−1Ym−1Zte, XmYm−1Z2e, ..., XmYm−1Z1+te,
XmYmZ, ..., XmYmZt.

Note that the matrix M is lower triangular matrix. Therefore, the determinant is

det(L) = en(e)Xn(X)Yn(Y)Zn(Z)

where n(e), n(X), n(Y) and n(Z) are the number of e’s, X’s, Y’s and Z’s in all diagonal elements
respectively, and

n(e) = (((1/8)m4 + (3/4)m3 + (11/8)m2 + (3/4)m) + ((1/6)(2m3 + 3m2 + m)t + (1/2)(m2 + m)t))

n(X) = (((1/8)m4 + (3/4)m3 + (11/8)m2 + (3/4)m) + ((1/6)(2m3 + 3m2 + m)t + (1/2)(m2 + m)t))

n(Y) = (((1/24)m4 + (1/4)m3 + (11/24)m2 + (1/4)m) + ((1/6)(m3 −m)t + (1/2)(m2 + m)t))

n(Z) = (((1/24)m4 + (1/4)m3 + (11/24)m2 + (1/4)m)+

((1/4)(m2 + m)t2 + (1/2)(m + 1)t2 + (1/12)(2m3 + 9m2 + 7m)t + (1/2)(m + 1)t))

Let Nδ, Nγ1 and Nγ2 be the upper bounds for X, max{k0, k1} and min{k0, k1} respectively,
then the bound for δ in which the generalized Howgrave-Graham result holds given in the
following theorem.

Theorem 3. [7] Let N = pq be an RSA modulus with q < p < 2q. Let e = Nα, X = Nδ, Y = Nγ1 , Z = Nγ2

and k be the multiplicative inverse of ϕ(N) modulo e. Suppose the prime sum p + q is of the form p + q =

2nk0 + k1, for a known positive integer n and for |k| ≤ X, max{|k0|, |k1|} ≤ Y and min{|k0|, |k1|} ≤ Z one
can factor N in polynomial time if

δ <
1
2

α− 1
2

γ1 +
1
16

γ2 −
1

16

√
48(α− γ1)γ2 + 33γ2

2. (1)

To improve this bound in a lower dimension than the above dimension, first we construct
a sublattice SL of L and after that we apply the sublattice based techniques to the lattice SL given by
J. Blömer, A. May in [5], and are described in the following sections.

3.1. Construction of a Sublattice SSSL of L

The construction of a sublattice SL of L in order to improve the bound for δ is given in
the following.

• First remove following rows in M corresponding to g-shifts
em, xem, xzem, ..., xm−1em, ..., xm−1zm−1em,
f em−1, x f em−1, xz f em−1, ..., xm−2 f em−1, ..., xm−2zm−2 f em−1,
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...
f m−2e2, x f m−2e2, xz f m−2e2,
f m−1e.

Therefore the remaining rows in M corresponding to g-shifts are
xmem, xmzem, ..., xmzmem,
xm−1 f em−1, ..., xm−1zm−1 f em−1,
...
x f m−1e, xz f m−1e,
f m,
and its corresponding g-shifts can be written as

gs(x, y, z) = xl1 zl2( f (x, y, z))kem−k for k = 0, ..., m, l1 = m− k, l2 = 0, ..., l1.

• Now remove some rows in M corresponding to h-shifts are
zem, ..., ztem, ..., xm−1zmem, ..., xm−1z(m−1)+tem,
z f em−1, ..., zt f em−1, ..., xm−2zm−1 f em−1, ..., xm−2z(m−2)+t f em−1,
...
z f m−2e2, ..., zt f m−2e2, xz2 f m−2e2, ..., xz1+t f m−2e2,
z f m−1e, ..., zt f m−1e.
Therefore the remaining rows in M corresponding to h-shifts are
xmzm+1em, ..., xmzm+tem,
xm−1zm f em−1, ..., xm−1z(m−1)+t f em−1,
...
xz2 f m−1e, ..., xzt+1 f m−1e,
z f m, ..., zt f m, and its corresponding h-shifts can be written as

hs(x, y, z) = xl1 zl2( f (x, y, z))kem−k for k = 0, ..., m, l1 = m− k, l2 = l1 + 1, ..., l1 + t.

Now, let SL be the sub-lattice of L spanned by the coefficients of the vectors gs(xX, yY, zZ) and
hs(xX, yY, zZ) shifts and Ms be the matrix of the lattice SL.
Note that the matrix Ms is not square. So apply the sublattice based techniques to the basis of SL or the
rows of Ms to get a square matrix. Using that square matrix, the attack bound can be found and is
given in the following section.

3.2. Applying Sub-Lattice Based Techniques to Get an Attack Bound

In [5], J. Blomer, A. May proposed a method to find an attack bound for low deciphering exponent
in a smaller dimension than the approach by Boneh and Durfee’s attack in [4]. Apply their method
based on sublattice reduction techniques to our lattice SL to get an attack bound and is described in
the following.

In order to apply the Howgrave-Graham’s theorem [11] by using Theorem 1, we need three short
vectors in SL as our polynomial consists of three variables. However, note that Ms is not a square
matrix. So, first construct a square matrix Msl by removing some columns in Ms, which are small linear
combination of non-removing columns in Ms. Then the short vector in Msl lead to short reconstruction
vector in SL.

Construction of a square sub-matrix Msl of Ms.
Columns in M and Ms are same and each column in M is nothing but the coefficients of a variable,

which is a leading monomial of the polynomial g or h-shifts. The first ( 1
6 m3 + m2 + 11

6 m + 1) and
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remaining
(

1
2 (m

2 + m)t + (m + 1)t
)

columns are corresponding to the leading monomial of the
polynomials g and h-shifts respectively. Therefore,

1. the first ( 1
6 m3 + m2 + 11

6 m + 1) columns are the coefficients of the each variable xi1 yi2 zi3

for i1 = i2 = k, i3 = 0 and i1 = k + 1, ..., m, i2 = k, i3 = 0, ..., (i1 − i2) and remaining(
1
2 (m

2 + m)t + (m + 1)t
)

columns are the coefficients of the each variable xi1 yi2 zi3 for i1 = i2 =

k, i3 = 1, ..., t and i1 = k + 1, ..., m, i2 = k, i3 = (i1− i2) + 1, ..., (i1− i2) + t. So the variable xi1 yi2 zi3

corresponds a column in first ( 1
6 m3 + m2 + 11

6 m + 1) columns if i1 ≥ i2 + i3 and corresponds a

column in remaining
(

1
2 (m

2 + m)t + (m + 1)t
)

columns if i1 < i2 + i3.

2. As 1, x, xy, xz are the monomials of f , the set of all monomials of f m for m ≥ 0 is {xi1 yi2 zi3 ; i1 =

0, ..., m, i2 = 0, ..., i1, i3 = 0, ..., i1 − i2}. Therefore, the coefficient of the variable xi1 yi2 zi3 in f m is
non-zero if and only if i3 ≤ i1 − i2, i.e., i1 ≥ i2 + i3.

Remove columns in Ms corresponding to the coefficients of the variable xaybzc for all 0 ≤ a ≤
m− 1 and note that every such column is

(
m−(a−b)
(m−a)!b!

)
· 1

Xm−aYm−a multiple of a non-removed column,

corresponding to the coefficients of xmym−(a−b)zc and is proved in the following theorem.

Theorem 4. Each column in Ms corresponding to the coefficients of the variable xaybzc, a leading monomial
of the polynomial g or h-shifts, for all 0 ≤ a ≤ m− 1 is

(
m−(a−b)
(m−a)!b!

)
· 1

Xm−aYm−a multiple of a non-removed

column, represents the coefficients of the variable xmym−(a−b)zc.

Proof. First assume that |k0| ≤ |k1|, then f (x, y, z) = (N + 1)x + xy + 2nxz− 1.
For n = 0, ..., m, k1 = m − n, k2 = 0, ..., k1 , the gs-shifts xk1 zk2 f nek1 corresponds first ( 1

6 m3 + m2 +
11
6 m + 1) rows in Ms and for n = 0, ..., m, k1 = m− n, k2 = k1 + 1, ..., k1 + t, the hs-shifts xk1 zk2 f nek1

corresponds remaining rows in Ms. We prove this theorem in two cases.
Case(i): Any column in first ( 1

6 m3 + m2 + 11
6 m + 1) columns of Ms. i.e., a column corresponding

coefficients of a variable xaybzc with a ≥ b + c, from the above analysis in (1).
Given that 0 ≤ a ≤ m− 1. From the above analysis in (1) and (2), the coefficient of xaybzc is

non-zero in gs-shifts xk1 zk2 f nek1 if and only if a ≥ k1, b ≤ m− k1, c ≥ k2 and a− k1 ≥ b + (c− k2).
As k1 ≥ k2, k2 ≥ 0 and a− k1 ≥ b + (c− k2), max{0, k1 − (a− (b + c))} ≤ k2 ≤ min{k1, c} and also
as a− k1 < b + (c− k2) for k1 > a− b, k1 is such that 0 ≤ k1 ≤ a− b.

Therefore, the coefficient of xaybzc is non-zero in gs-shifts xk1 zk2 f nek1 if and only if a ≥ k1, b ≤
m− k1, c ≥ k2 and k1 = 0, ..., a− b, k2 = max{0, k1 − (a− (b + c))}, ..., min{k1, c}.

Similarly we can prove that, the coefficient of xaybzc is non-zero in hs-shifts xk1 zk2 f nek1 if and
only if a ≥ k1, b ≤ m− k1, c ≥ k2 and k1 = 0, ..., c, k2 = k1 + 1, ..., min{c, k1 + t} using the inequalities
k1 + 1 ≤ k2 ≤ k1 + t, a ≥ b + c and analysis in (1) and (2), and say min{c, k1 + t} = lt

The formula for finding a coefficient of a variable xl1 yl2 zl3 = (1)n−l1 xl1−(l2+l3)(xz)l3(xy)l2 for
l1 ≤ n− 1 in f n is

n!
(n− l1)!(l1 − (l2 + l3))!l2!l3!)

(−1)n−l1(N + 1)l1−(l2+l3)(2n)l3

and coefficient of xaybzc in xk1 yk2 f nek1 is nothing but a coefficient of xa−k1 ybzc−k2 in f n.
Note that a column corresponding to a variable xmym−azc is in the non-removing columns in

Ms and coefficient of xmym−azc is zero for k1 > a− b in gs-shifts , k1 > c in hs-shifts. The columns
corresponding to a variable xaybzc and a variable xmym−azc only with non-zero terms is depicted
in Table 1.

Therefore, from Table 1 the result holds in this case.
Case(ii): Any column in remaining

(
1
2 (m

2 + m)t + (m + 1)t
)

columns of Ms, i.e., a column

corresponding coefficients of a variable xaybzc with a < b + c, from the above analysis in (1).
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The coefficient of xaybzc is non-zero in gs-shifts xk1 zk2 f nek1 if and only if a ≥ k1, b ≤ m− k1, c ≥ k2,
a − k1 ≥ b + (c − k2) and note for a < b + c, a − k1 < b + (c − k2) as k1 ≥ k2 in gs-shifts. So the
coefficient of xaybzc is zero in all rows corresponding to gs-shifts.

The coefficient of xaybzc is non-zero in hs-shifts xk1 zk2 f nek1 if and only if a ≥ k1, b ≤ m− k1, c ≥ k2

and a− k1 ≥ b + (c− k2). For k1 > a− b, a− k1 < b + (c− k2) and from the inequalities k1 + 1 ≤ k2 ≤
k1 + t, a− k1 ≥ b + (c− k2), we have the coefficient of xaybzc is non-zero in hs-shifts xk1 zk2 f nek1 if and
only if a ≥ k1, b ≤ m− k1, c ≥ k2 and k1 = 0, ..., a− b, k2 = max{k1 + 1, k1 + (b+ c)− a}, ..., min{c, k1 +

t}. Take lt = min{c, k1 + t}.
Note that coefficient of xmym−azc is zero in all gs-shifts as a > c and for k1 > a− b in hs-shifts.

The columns corresponding to a variable xaybzc and a variable xmym−azc only with non-zero terms is
depicted in Table 2. Therefore, from Table 2 the result holds in this case.

Now apply the above analysis to the polynomial f (x, y, z) = 2n′x(N + 1) + xy + 2n′xz− 2n′ for
|k1| ≤ |k0|, then this result is obtained.

From the above theorem, all columns corresponding to a variable xaybzc for all 0 ≤ a ≤ m− 1 are
depending on a non-removed column, corresponding to a variable xmym−(a−b)zc in Ms. Let Msl be
a matrix formed by removing all above columns from the matrix Ms and Sl be a lattice spanned by
rows of Msl . Then the short vector in Sl lead to short reconstruction vector in SL, i.e., if u = ∑

b∈B
cbb is a

short vector in Sl then this lead to a short vector ū = ∑
b∈B̄

cbb (same coefficients cb) in SL where B and B̄

are the basis for Sl and SL respectively.
As we removed all depending columns in Ms to form a matrix Msl , apply the lattice based

techniques to Sl instead of SL to get an attack bound and this lattice reduction techniques gives
a required short vectors in SL for a given bound. The matrix Msl is lower triangular with rows same as
in Ms and each column corresponding to coefficients of one of the variables ( leading monomials of gs

and hs-shifts)

gs − shift



xm, xmz, ..., xmzm,
xmy, ..., xmyzm−1,
...
xmym−1, xmym−1z,
xmym,

hs − shift



xmzm+1, ..., xmzm+t,
xmyzm, ..., xmyz(m−1)+t,
...
xmym−1z2, ..., xmym−1z1+t,
xmymz, .., xmymzt.
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Table 1. A column in first ( 1
6 m3 + m2 + 11

6 m + 1) columns of Ms and a column corresponding to coefficients of a variable xmym−azc only with non-zero terms.

Rows Corresponding to g and h Shifts Column Corresponding to xaybzc Column Corresponding to xmym−azc

xa−bzc f m−(a−b)ea−b (m−(a−b))!
(m−a)!b! (−1)m−aXaYbZcea−b XmYm−(a−b)Zcea−b

xa−b−1zc−1 f m−(a−b−1)ea−b−1 (m−(a−b)+1)!
(m−a)!b! (−1)m−a2nXaYbZcea−b−1 (m−(a−b)+1)!

(m−(a−b))! 2nXmYm−(a−b)Zcea−b−1

xa−b−1zc f m−(a−b−1)ea−b−1 (m−(a−b)+1)!
(m−a)!b! (−1)m−a(N + 1)XaYbZcea−b−1 (m−(a−b)+1)!

(m−(a−b))! (N + 1)XmYm−(a−b)Zcea−b−1

...
...

...

xa−b−(c−1)z f m−((a−b)−(c−1))ea−b−(c−1) (m−(a−b)+(c−1))!
(m−a)!b!(c−1)! (−1)m−a(2n)c−1XaYbZcea−b−(c−1) (m−(a−b)+(c−1))!

(m−(a−b))!(c−1)! (2
n)c−1XmYm−(a−b)Zcea−b−(c−1)

...
...

...

xa−b−(c−1)zc f m−((a−b)−(c−1))ea−b−(c−1) (m−(a−b)+(c−1))!
(m−a)!b!(c−1)! (−1)m−a(N + 1)c−1XaYbZcea−b−(c−1) (m−(a−b)+(c−1))!

(m−(a−b))!(c−1)! (N + 1)c−1XmYm−(a−b)Zcea−b−(c−1)

xa−b−c f m−(a−b)+cea−(b+c) (m−(a−b)+c)!
(m−a)!b!c! (−1)m−a(2n)cXaYbZcea−b−c (m−(a−b)+c)!

(m−(a−b))!c! (2
n)cXmYm−(a−b)Zcea−b−c

...
...

...

xa−b−czc f m−(a−b)+cea−(b+c) (m−(a−b)+c)!
(m−a)!b!c! (−1)m−a(N + 1)cXaYbZcea−b−c (m−(a−b)+c)!

(m−(a−b))!c! (N + 1)cXmYm−(a−b)Zcea−b−c

...
...

...

f m m!
(m−a)!b!c!(a−(b+c))! (−1)m−a(N + 1)(a−(b+c))(2n)cXaYbZc m!

(m−(a−b))!c!(a−(b+c))! (N + 1)a−(b+c)(2n)cXmYm−(a−b)Zc

xc−1zc f m−(c−1)ec−1 (m−(c−1))!
(m−a)!b!(a−(b+c)+1)! (−1)m−a(N + 1)a−(b+c)+1XaYbZcec−1 (m−(c−1))!

(m−(a−b))!(a−(b+c)+1)! (N + 1)a−(b+c)+1XmYm−(a−b)Zcec−1

...
...

...

xz2 f m−1e (m−1)!
(m−a)!b!(c−2)!(a−(b+c)+1)! (−1)m−a(N + 1)a−(b+c)+1(2n)c−2XaYbZce (m−1)!

(m−(a−b))!(c−2)!(a−(b+c)+1)! (N + 1)a−(b+c)+1(2n)c−2XmYm−(a−b)Zce

...
...

...

xzlt f m−1e (m−1)!
(m−a)!b!(c−lt)!(a−(b+c)+lt−1)! (−1)m−a(N + 1)a−(b+c)+lt−1(2n)c−lt XaYbZce (m−1)!

(m−(a−b)!(c−lt)!(a−(b+c)+lt−1)! (N + 1)a−(b+c)+lt−1(2n)c−lt XmYm−(a−b)Zce

z f m m!
(m−a)!b!(c−1)!(a−(b+c)+1)! (−1)m−a(N + 1)a−(b+c)+1(2n)c−1XaYbZc m!

(m−(a−b))!(c−1)!(a−(b+c)+1)! (N + 1)a−(b+c)+1(2n)c−1XmYm−(a−b)Zc

...
...

...

zlt f m m!
(m−a)!b!(c−lt)!(a−(b+c)+lt)!

(−1)m−a(N + 1)a−(b+c)+lt (2n)c−lt XaYbZc m!
(m−(a−b))!(c−lt)!(a−(b+c)+lt)!

(−1)m−a(N + 1)a−(b+c)+lt (2n)c−lt XmYm−(a−b)Zc
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Table 2. A column in the last
(

1
2 (m

2 + m)t + (m + 1)t
)

columns of Ms and a column corresponding to coefficients of a variable xmym−azc only with non-zero terms.

Rows Corresponding to g and h Shifts Column Corresponding to xaybzc Column Corresponding to xmym−azc

xa−bzc f m−(a−b)ea−b (m−(a−b))!
(m−a)!b! (−1)m−aXaYbZcea−b XmYm−(a−b)Zcea−b

...
...

...

x2z(b+c)−a+2 f m−2e2 (m−2)!
(m−a)!b!((a−b)−2)! (−1)m−a(2n)(a−b)−2XaYbZce2 (m−2)!

(m−(a−b))!((a−b)−2)! (2
n)(a−b)−2XmYm−(a−b)Zce2

...
...

...

x2zlt f m−2e2 (m−2)!
(m−a)!b!(c−lt)!(lt−((b+c)−a+2))! (−1)m−a(N + 1)lt−((b+c)−a+2)(2n)c−lt XaYbZce2 (m−2)!

(m−(a−b))!(c−lt)!(lt−((b+c)−a+2))! (N + 1)lt−((b+c)−a+2)(2n)c−lt XmYm−(a−b)Zce2

xzb+c−a+1 f m−1e (m−1)!
(m−a)!b!((a−b)−1)! (−1)m−a(2n)(a−b)−1XaYbZce (m−1)!

(m−(a−b))!((a−b)−1)! (2
n)(a−b)−1XmYm−(a−b)Zce

...
...

...

xzlt f m−1e (m−1)!
(m−a)!b!(c−lt)!((lt−(b+c−a+1))! (−1)m−a(N + 1)(lt−(b+c−a+1)(2n)c−lt XaYbZce (m−1)!

(m−(a−b))!(c−lt)!((lt−(b+c−a+1))! (N + 1)(lt−(b+c−a+1)(2n)c−lt XmYm−(a−b)Zce

zb+c−a f m m!
(m−a)!b!(a−b)! (−1)m−a(2n)a−bXaYbZc m!

(m−(a−b))!(a−b)! (2
n)a−bXmYm−(a−b)Zc

...
...

...

zlt f m m!
(m−a)!b!(c−lt)!(lt−((b+c)−a))! (−1)m−a(N + 1)lt−((b+c)−a)(2n)c−lt XaYbZc m!

(m−(a−b))!(c−lt)!(lt−((b+c)−a))! (−1)m−a(N + 1)lt−((b+c)−a)(2n)c−lt XmYm−(a−b)Zc
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Therefore Sl is a lattice spanned by coefficient vectors of the shift polynomials gsl(xX, yY, zZ) and
hsl(xX, yY, zZ) where

gsl(x, y, z) = xl1 zl2( f (x, y, z)− constant term of f )nel1 for n = 0, ..., m, l1 = m− n, l2 = 0, ..., l1 and

hsl(x, y, z) = xl1 zl2( f (x, y, z)− constant term of f )nel1 for n = 0, ..., m, l1 = m− n, l2 = l1 + 1, ..., l1 + t.

Since Sl is full-rank lattice, det Sl = det Msl = en(e)Xn(X)Yn(Y)Zn(Z) where n(e), n(X), n(Y), n(Z)
are denotes the number of e′s, X′s, Y′s, Z′s in all the diagonal elements of Msl respectively. As xnyn is
a leading monomial of f n with coefficient 1, we have

n(e) =
m

∑
n=0

∑
l1=m−n

l1

∑
l2=0

l1 +
m

∑
n=0

∑
l1=m−n

l1+t

∑
l2=l1+1

l1

= (1/3)m3 + m2 + (1/2)(m2 + m)t + (2/3)m,

n(X) =
m

∑
n=0

∑
l1=m−n

l1

∑
l2=0

n + l1 +
m

∑
n=0

∑
l1=m−n

l1+t

∑
l2=l1+1

n + l1

= (1/2)m3 + (3/2)m2 + (m2 + m)t + m,

n(Y) =
m

∑
n=0

∑
l1=m−n

l1

∑
l2=0

n +
m

∑
n=0

∑
l1=m−n

l1+t

∑
l2=l1+1

n

= (1/6)m3 + (1/2)m2 + (1/2)(m2 + m)t + (1/3)m,

n(Z) =
m

∑
n=0

∑
l1=m−n

l1

∑
l2=0

l2 +
m

∑
n=0

∑
l1=m−n

l1+t

∑
l2=l1+1

l2

= (1/6)m3 + (1/2)(m + 1)t2 + (1/2)m2 + (1/2)(m2 + 2m + 1)t + (1/3)m

and dim(Sl) = ω =
m

∑
n=0

∑
l1=m−n

l1

∑
l2=0

1 +
m

∑
n=0

∑
l1=m−n

l1+t

∑
l2=l1+1

1

= (1/2)m2 + (m + 1)t + (3/2)m + 1.

Take t = τm, then for sufficiently large m, the exponents n(e), n(X), n(Y), n(Z) and the dimension
ω reduce to

ω =

(
1
2
+ τ

)
m2 + o(m2),

n(e) =
(

1
3
+

1
2

τ

)
m3 + o(m3),

n(X) =

(
1
2
+ τ

)
m3 + o(m3),

n(Y) =
(

1
6
+

1
2

τ

)
m3 + (m3),

n(Z) =
(

1
6
+

1
2

τ +
1
2

τ2
)

m3 + o(m3).

Applying the LLL algorithm to the basis vectors of the lattice Sl , i.e., coefficient vectors of the shift
polynomials, we get a LLL-reduced basis say {v1, v2, ..., vω} and from the Theorem 1 we have

||v1|| ≤ ||v2|| ≤ ||v3|| ≤ 2
ω(ω−1)
4(ω−2) det(Sl)

1
ω−2 .
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In order to apply the generalization of Howgrave-Graham result in Theorem 2, we need the
following inequality

2
ω(ω−1)
4(ω−2) det(Sl)

1
ω−2 <

em
√

ω
.

from this, we deduce

det(Sl) <
1(

2
ω(ω−1)
4(ω−2)

√
ω

)ω−2 em(ω−2) <
1(

2
ω(ω−1)
4(ω−2)

√
ω

)ω−2 emω.

As the dimension ω is not depending on the public encryption exponent e, 1(
2

ω(ω−1)
4(ω−2) √ω

)ω−2 is a

fixed constant, so we need the inequality det(Sl) < emω, i.e., en(e)Xn(X)Yn(Y)Zn(Z) < emω.
Substitute all values and taking logarithms, neglecting the lower order terms and after simplifying

by m3 we get
(−1− 3τ)α + (3 + 6τ)δ + (1 + 3τ)γ1 + (1 + 3τ + 3τ2)γ2 < 0.

The left hand side inequality is minimized at τ = α−(2δ+γ1+γ2)
2γ2

and putting this value in the above
inequality we get

δ <
1
2

α− 1
2

γ1 −
1
6

√
6(α− γ1)γ2 + 3γ2

2.

From the first three short vectors v1, v2 and v3 in LLL reduced basis of a basis B in Sl we consider
three polynomials g1(x, y, z), g2(x, y, z) and g3(x, y, z) over Z such that g1(x0, y0, z0) = g2(x0, y0, z0) =

g3(x0, y0, z0) = 0. These short vectors v1, v2 and v3 lead to a short vector v̄1, v̄2 and v̄3 respectively
and ḡ1(x, y, z), ḡ2(x, y, z) and ḡ3(x, y, z) its corresponding polynomials. Apply the same analysis in
paper [7] to the above polynomials to get the factors p and q of RSA modulus N.

Theorem 5. Let N = pq be an RSA modulus with q < p < 2q. Let e = Nα, X = Nδ, Y = Nγ1 , Z = Nγ2 and
k be the multiplicative inverse of ϕ(N) modulo e. Suppose the prime sum p+ q is of the form p+ q = 2nk0 + k1,
for a known positive integer n and for |k| ≤ X, max{|k0|, |k1|} ≤ Y and min{|k0|, |k1|} ≤ Z one can factor
N in polynomial time if

δ <
1
2

α− 1
2

γ1 −
1
6

√
6(α− γ1)γ2 + 3γ2

2. (2)

Proof. Follows from the above argument and the LLL lattice basis reduction algorithm operates in
polynomial time [9].

Note that for any given primes p and q with q < p < 2q, we can always find a positive integer
n such that p + q = 2nk0 + k1 where 0 ≤ |k0|, |k1| ≤≈ 0.25. A typical example is 2n ≈ 3√

2
N0.25 as

p + q < 3√
2

N0.5 [12]. So take γ1 and γ2 in the range (0, 0.25).
Let δL and δsl be the bounds for δ in inequalities (1) and (2) respectively. Then note that δsl is

slightly larger than δL and is depicted in Figure 1 for α = 0.51, 0.55, 0.750 and 1.
In the Figure 1, x, y, z-axis represents γ1, γ2, bound for δ respectively and yellow, red regions

represents δsl , δL receptively. From this figure, it is noted that the yellow region is slightly above the red
region, i.e., δsl is slightly grater than δL and this improvement increases when the values of α increases.
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(a) (b)

(c) (d)

Figure 1. The region of δsl and δL for α = 0.501, 0.55, 0.75, 1; (a) α = 0.501; (b) α = 0.55; (c) α = 0.75;
(d) α = 0.1.

As the dimension of L is (1/6)m3 + (1/2)m2(t + 2) + (1/6)m(9t + 11) + (t + 1) for t =(
α−(2δ+γ1+γ2)

3γ2

)
m [7] and Sl is (1/2)m2 + (m + 1)t + (3/2)m + 1 for t =

(
α−(2δ+γ1+γ2)

2γ2

)
m, note the

dimension of Sl is (1/6)m3 + (1/3)t(m2 − 1) + (1/2)m2 + (1/3)m, for t =
(

α−(2δ+γ1+γ2)
2γ2

)
smaller

than the dimension of L.

3.3. A New Attack Bound for Deciphering Exponent d with a Composed Prime Sum

In this section, we apply the same analysis for getting bound for d which we have earlier obtained
resultant bound for k.

From the relation ed ≡ 1(mod ϕ(N)), we get

t(N + 1− (2nk0 + k1)) + 1 ≡ 0(mod e) (3)

for t = ed−1
ϕ(N)

and the prime sum p + q = 2nk0 + k1.
Now define

f ′(x, y, z) =

{
(N + 1)x + xy + (2n)xz + 1 if |k0| ≤ |k1|
2n′x(N + 1) + xy + 2n′xz + 2n′ if |k1| ≤ |k0|.

From Equation (3), note that if |k0| ≤ |k1| then (t,−k1,−k0) is a solution and if |k1| ≤ |k0| then
(t,−k0,−k1) is a solution for the modular polynomial equation f ′(x, y, z) ≡ 0(mod e).
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As the polynomials f (x, y, z), f ′(x, y, z) differ by signs only, we can implement the above argument
for f (x, y, z) to f ′(x, y, z) and obtained new bound on d for t < d = Nδ′ , max |k0|, |k1| ≤ Nγ1 ,
min |k0|, |k1| ≤ Nγ2 and for e = Nα is

δ′ <
1
2

α− 1
2

γ1 −
1
6

√
6(α− γ1)γ2 + 3γ2

2. (4)

For α = 1, the Boneh and Durfee’s bound for d = Nδ is N0.292. The new bound on d may overcome
this bound for α = 1 and for some values of γ1 and γ2 and that values are depicted in Table 3.

Table 3. For α = 1, the values of bound on δ′ in terms of γ1 and γ2.

γ1 γ2 δ′ New Bound

0.40 0.005–0 0.2929–0.3
0.35 0.0094–0 0.2929–0.325
0.25 0.052–0 0.2929–0.375
0.15 0.1152–0 0.2929–0.425
0.01 0.009–0 0.4563–0.495

4. Conclusions

In this paper, another attack bound for k, a small multiplicative inverse of ϕ(N) modulo e is
given when the prime sum p + q is of the form p + q = 2nk0 + k1 where n is a given positive integer
and k0 and k1 are two suitably small unknown integers using sublattice reduction techniques and
Coppersmith’s methods for finding small roots of modular polynomial equations. This attack bound
is slightly larger than the bound, in the approach using lattice based techniques and requires lattice
of smaller dimension than the approach given by using lattice based techniques. Also, we gave a
new attack bound for the deciphering exponent d with above composed prime sum and compare it to
Boneh and Durfee’s bound.
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Achievements from the project

First the continued fraction based attacks of M.J. Wiener and its extensions are
extended to RSA-like Cryptosystem over elliptic curves E(Zpq) due to KMOV.
Published these results under the title ”Extending Wiener’s Extension to RSA-
Like Cryptosystems over Elliptic curves” in the British Journal of Mathematics &
Computer Science 14(1): 1-8, Jan 2016, Article no.BJMCS.23036 ISSN: 2231-0851,
SCIENCEDOMAIN International.

Lattice reduction attacks on RSA with respect to small multiplicative inverse
of p− 1 or q − 1 modulo e and with respect to small multiplicative inverse of φ(N)
modulo e are proposed for e the public encryption exponent. If e = Nα > p−1, r and
s the multiplicative inverses of p−1 and q−1 modulo e respectively, then for (x0, y0)
solution of the polynomial congruence f(x, y) ≡ 0 mod e, for f(x, y) = x(y+A)−1
with A =

⌈√
N
⌉
− 1 and N δ, Nγ upper bounds for x0, y0 respectively, we imple-

mented lattice reduction techniques to our polynomial congruence and proved that

the attack works for δ <
3α+γ−2

√
γ(3α+γ)

3
when both x and y shifts are used and

δ < α−γ
2

when only x-shifts are used. Further we improved the bound for δ as

α − γ(1 + α) < δ < α − √
αγ and δ <

2α−6γ+2
√

α2−αγ+4γ2

5
by implementing the

sublattice based techniques.
Published these results under the title ”Cryptanalysis of RSA with small multi-
plicative Inverse of (p - 1) or (q - 1) modulo e”, in the journal of Journal of Global
Research in Mathematical Achieves (JGRMA), ISSN: 2320-5822, Volume 5, No.
5(May-2018), pp. 72-81.

Further considered the lattice attacks on RSA if the multiplicative inverse k of
φ(N) modulo e is small for q < p < 2q and e = Nα > p + q, the prime sum. The
polynomial congruence f(x, y, z) ≡ 0(mode) for

f(x, y, z) =

{
(N + 1)x+ xy + (2n)xz − 1 if |k0| ≤ |k1|
2n

′
x(N + 1) + xy + 2n

′
xz − 2n

′
if |k1| ≤ |k0|

where 2n
′
is an inverse of 2n mod e, the attack bound for δ is such that

δ < 1
2
α− 1

2
γ1+

1
16
γ2− 1

16

√
48(α− γ1)γ2 + 33γ2

2 where N
γ1 , Nγ2 are the upper bounds

for max{|k0|, |k1|}, min{|k0|, |k1|} respectively.
Published these results under the title ”Cryptanalysis of RSA with Small Multi-
plicative Inverse of φ(N) Modulo e and with a Composed Prime Sum p + q”, in
the journal of International Journal of Mathematics and its Applications (IJMAA),
ISSN: 2347-1557, Volume 6, No. 1(2018), Impact factor: 0.421 pp 515-526.



Further improved the previous bound by using the sub-lattice based techniques.
The new bound on δ is 1

2
α − 1

2
γ1 − 1

6

√
6(α− γ1)γ2 + 3γ2

2 is showed to be greater
than the former bound graphically.
Communicated these results under the title ”An Attack Bound for Small Multiplica-
tive Inverse of φ(N) modulo e with a Composed Prime Sum p + q using Sub lattice
Based Techniques”, in Journal of Cryptography, ISSN 2410-387X. The correspond-
ing refinement of attack bounds in each case is depicted explicitly in tabular forms.

This study is helpful in the other RSA-like cryptosystems with Dickson poly-
nomials, Lucas sequences etc. by identifying the corresponding analogue to ϕ(N).
This study of refinement of attack bounds of RSA has refined some attack bounds
and is also useful in taking some precautionary measures in the implementation of
RSA. All the attacks and refinement of attack bounds proposed in the study are
presented in a tabular form that is useful in the adaption of RSA and the selections
of parameters of RSA may be carried out according to the table on refinement of
attack bounds as given in table 6.1, thereby avoiding the choices of parameters that
lead to an attack.
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Summary of the Findings

In 1990, M.J. Wiener was the first one to describe a cryptanalytic attack on the
use of short RSA decryption exponent d. This attack is based on continued fraction
algorithm which finds the fraction t

d
that is a convergent of e

N
, where t = ed−1

φ(N)
, in a

polynomial time when d < N0.25 for N = pq and q < p < 2q.
The studies on Wiener’s attack on RSA with small decryption exponents led to the
refinement of attack bounds on the decryption exponent.
In 2000, D. Boneh and G. Durfee improved the Wiener bound on d from N0.25 to
N0.292, for q < p < 2q using lattice reduction theory.
In 2001, a lattice attack on RSA with short secret exponent d, for d less than N0.29

was given by J. Blömer and A. May, this is slightly less than that of Boneh and
Durfee but this method requires lattices of dimension smaller than the approach by
Boneh and Durfee.
In 2002, B de Weger, for d = N δ, p− q = Nβ and q < p < 2q extended the Wiener’s
attack in the range N0.25 ≤ d ≤ N0.75−β, using continued fractions and the bound
improved to δ < 1

6
(4β + 5)− 1

3

√
(4β + 5)(4β − 1) using lattice based techniques in

and the bound improved to δ < 1−
√

2β − 1
2
using sub-lattice based techniques in

under the condition δ > 2− 4β.
In 2008, Subhamoy Maitra and Santanu Sarkar instead of considering p− q = Nβ,
considered |p − ρq| ≤ Nγ

16
where 1 ≤ ρ ≤ 2 to get the bound when d = N δ and

δ < 1
2
− γ

2
, for |p − ρq| ≤ Nγ

16
and γ ≤ 1

2
using continued fractions and also showed

that this bound on δ can be extended using the lattice based techniques.
In 2006, E. Jochemsz and A. May gave a new attack on an RSA variant called
common prime RSA. In 1995, R.G.E. Pinch in, proved that Wieners attack on RSA
Cryptosystem with small decryption exponent may be extended to RSA-like cryp-
tosystems on elliptic curves and Lucas sequences.
In this project we described the refinement of all these attacks on RSA by cate-
gorizing the attacks as attacks based on continued fractions and attacks based on
lattice reduction and proposed extensions of these attacks on RSA with respect to
other variants of RSA and RSA-like cryptosysytem over elliptic curves E(Zpq) due
to KMOV.
We first described the continued fraction based attacks of M.J. Wiener and its
extensions by B de Weger and Subhamoy Maitra and Santanu Sarkar and then pro-
posed that the Wieners extensions can also be extended to RSA-like Cryptosystem
over elliptic curves E(Zpq) due to KMOV. Next we described the lattice reduc-
tion based attacks on RSA by Boneh-Durfee, Blömer-May, B de Weger and Maitra-
Sarkar. All these existing lattice reduction based attacks are with respect to low



decryption exponent d of RSA.
We proposed the extensions of lattice reduction attacks on RSA with respect to
small multiplicative inverse of p − 1 or q − 1 modulo e and with respect to small
multiplicative inverse of φ(N) modulo e, the public encryption exponent.
If e = Nα > p − 1, r and s the multiplicative inverses of p − 1 and q − 1 modulo
e respectively, then for (x0, y0) solution of the polynomial congruence f(x, y) ≡ 0
mod e, for f(x, y) = x(y + A) − 1 with A =

⌈√
N
⌉
− 1 and N δ, Nγ upper bounds

for x0, y0 respectively, we implemented the idea of Boneh and Durfee as in based
on lattice reduction techniques to our polynomial congruence and proved that the

attack works for δ <
3α+γ−2

√
γ(3α+γ)

3
when both x and y shifts are used and δ < α−γ

2

when only x-shifts are used. Further we improved the bound for δ as α−γ(1+α) <

δ < α − √
αγ and δ <

2α−6γ+2
√

α2−αγ+4γ2

5
by implementing the sublattice based

techniques of Boneh-Durfee and Blömer-May respectively.
We also extended the lattice attacks on RSA if the multiplicative inverse k of φ(N)
modulo e is small for q < p < 2q and e = Nα > p+ q, the prime sum. This case can
be considered even when both (p − 1) mod e and (q − 1) mod e do not have small
inverses but φ(N) mod e has small inverse. For k ≤ N δ, the attack bounds for δ are
described by repeating the above lattice based techniques. Further noted that for
β ≈ 0.5, the maximum bound for δ can be improved when the prime sum p+ q is in
the composed form p+ q = 2nk0 + k1 for known positive integer n and for unknown
suitably small integers k0, k1. By using lattice based techniques to the polynomial
congruence f(x, y, z) ≡ 0(mode) for

f(x, y, z) =

{
(N + 1)x+ xy + (2n)xz − 1 if |k0| ≤ |k1|
2n

′
x(N + 1) + xy + 2n

′
xz − 2n

′
if |k1| ≤ |k0|

where 2n
′
is an inverse of 2n mod e, the attack bound for δ is such that

δ < 1
2
α − 1

2
γ1 + 1

16
γ2 − 1

16

√
48(α− γ1)γ2 + 33γ2

2 where Nγ1 , Nγ2 are the upper
bounds for max{|k0|, |k1|}, min{|k0|, |k1|} respectively. Later we slightly improved
the previous bound by using the sub-lattice based techniques given by J. Blömer,
A. May in to the above polynomial congruence and this method requires lattice of
smaller dimension than the above method. The new bound on δ is 1

2
α − 1

2
γ1 −

1
6

√
6(α− γ1)γ2 + 3γ2

2 and showed that this is a little bit greater than the former
bound graphically. Note that this new attack bound is also an attack bound for
the deciphering exponent d. The corresponding refinement of attack bounds in each
case is depicted explicitly in tabular forms.
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Contribution to the society

Many practical advantages of RSA in online banking email and many more, are
primarily based on the security of RSA. Any study on the security analysis of RSA
hence is a contribution to society. The security of RSA is based on factorization of
composite number N = pq for p , q prime numbers.

RSA can be attacked by factorization methods and also there are attacking methods
based on the choices of parameters of RSA. This idea was initiated by M.J. Wiener
using continued fractions.

This project contributes to society by analyzing the existing continued fraction
based attacks and lattice based attacks and then further refine the attack bounds
by proposing some more latticed based attacks.

The advantage of lattice based attacks proposed by us is that we considered the
other invariant of RSA like p, q, ϕ(N) and noted that these attacks can also be
mounted for the private key exponent d not in the range of existing attack bounds.

It is also noted that looking at ψ(N) = (p + 1)(q + 1) as the analogue of Eu-
ler’s function ϕ(N) in the RSA-like cryptosystem over elliptic curve E(Zpq) due to
KMOV, all the lattice attacks can be extended to RSA-like cryptosystem over elliptic
curve E(Zpq) due to KMOV. This may be adapted for other RSA-like cryptosystems
with Dickson polynomials, Lucas sequences etc. by identifying the corresponding
analogue to ϕ(N).

All these attacks teach us to avoid the major difficulties while implementing RSA
and sustain against all existing attacks. This study of refinement of attack bounds
of RSA is useful in taking some precautionary measures in the adaptation of RSA
according to the refinement of attack bounds.
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