Syllabus & Model Question Papers
For 1/4 - B.Tech & 1/6 - B.Tech II – Semester
(From the admitted batch of 2015 – 2016 under CBCS Scheme)

Group – A & Group – B

Andhra University College of Engineering (Autonomous)
Andhra University
Visakhapatnam – 530 003
ANDHRA UNIVERSITY: : VISAKHAPATNAM
## Contents

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Topic</th>
<th>Pg. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>01.</td>
<td>Curriculum of Group – A</td>
<td>3</td>
</tr>
<tr>
<td>02.</td>
<td>Curriculum of Group – B</td>
<td>4</td>
</tr>
<tr>
<td>03.</td>
<td>Syllabus &amp; Model Question Papers Common to Both Group – A &amp; Group – B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>i. ENG 1201: Mathematics – III</td>
<td>5</td>
</tr>
<tr>
<td>04.</td>
<td>Syllabus &amp; Model Question Papers of the Subjects of Group – A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>i. ENG 1201: Physics</td>
<td>6-7</td>
</tr>
<tr>
<td></td>
<td>ii. ENG 1204: Engineering Graphics</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>iii. ENG 1206: Professional Ethics and Moral Values</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>iv. ENG 1209: Physics Lab</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>v. ENG 1211: Workshop</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>vi. ENG 1213: English Language Lab</td>
<td>12-13</td>
</tr>
<tr>
<td></td>
<td>vii. ENG 1214: Sports/NCC/NSS</td>
<td>14</td>
</tr>
<tr>
<td>05.</td>
<td>Syllabus &amp; Model Question Papers of the Subjects of Group – B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>i. ENG 1203: Chemistry</td>
<td>15-16</td>
</tr>
<tr>
<td></td>
<td>ii. ENG 1205: Computer Programming &amp; Numerical Methods</td>
<td>17-18</td>
</tr>
<tr>
<td></td>
<td>iii. ENG 1207: History of Science &amp; Technology</td>
<td>19-20</td>
</tr>
<tr>
<td></td>
<td>iv. ENG 1210: Chemistry Lab</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>v. ENG 1212: Computer Programming &amp; Numerical Methods Lab</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>vi. ENG 1213: English Language Lab</td>
<td>23-24</td>
</tr>
<tr>
<td></td>
<td>vii. ENG 1114: Sports/NSS/NCC</td>
<td>25</td>
</tr>
<tr>
<td>06.</td>
<td>Syllabus &amp; Model Question Papers of the Department Subjects</td>
<td></td>
</tr>
<tr>
<td></td>
<td>i. CIV 1208: Engineering Geology</td>
<td>27-28</td>
</tr>
<tr>
<td></td>
<td>ii. CSE 1208: Probability, Statistics and Queuing Theory (Common with IT)</td>
<td>29-30</td>
</tr>
<tr>
<td></td>
<td>iii. EEE 1208: Engineering Mechanics &amp; Strength of Materials</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>iv. ECE 1208: Basic Electronics Engineering</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>v. MECH 1208: Metallurgy and Materials Engineering</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>vi. NAM 1208: Introduction to Naval Architecture</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>vii. GINF 1208: Geomorphology</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>viii. INST 1208: Material Science</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>ix. MET 1208: Elements of Material Science</td>
<td>37</td>
</tr>
</tbody>
</table>
# COMMON SCHEME OF INSTRUCTION & EXAMINATION

**I/IV B.TECH (FOUR YEAR COURSE)**

&

**I/IV B.TECH (SIX YEAR DOUBLE DEGREE COURSE)**

(With effect from 2015-2016 admitted batch onwards)

Under Choice Based Credit System

**GROUP – A**

For the branches of

(Civil, Chemical, CSE, Information Technology)

## II-SEMESTER

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Course</th>
<th>Credits</th>
<th>Lecture Hrs</th>
<th>Tutorial Hrs</th>
<th>Lab Hrs</th>
<th>Total Contact Hrs/Week</th>
<th>Sessional Marks</th>
<th>Exam Marks</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENG 1201</td>
<td>Mathematics-III*</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>--</td>
<td>4</td>
<td>30</td>
<td>70</td>
<td>100</td>
</tr>
<tr>
<td>ENG 1202</td>
<td>Physics</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>--</td>
<td>4</td>
<td>30</td>
<td>70</td>
<td>100</td>
</tr>
<tr>
<td>ENG 1204</td>
<td>Engineering Graphics</td>
<td>4</td>
<td>2</td>
<td>--</td>
<td>3</td>
<td>5</td>
<td>30</td>
<td>70</td>
<td>100</td>
</tr>
<tr>
<td>ENG 1206</td>
<td>Professional Ethics &amp; Moral Values</td>
<td>2</td>
<td>2</td>
<td>--</td>
<td>--</td>
<td>2</td>
<td>30</td>
<td>70</td>
<td>100</td>
</tr>
<tr>
<td>DS 1208</td>
<td>Department Subject #</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>--</td>
<td>4</td>
<td>30</td>
<td>70</td>
<td>100</td>
</tr>
<tr>
<td>ENG 1209</td>
<td>Physics Lab</td>
<td>2</td>
<td>--</td>
<td>--</td>
<td>3</td>
<td>3</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>ENG 1211</td>
<td>Workshop</td>
<td>2</td>
<td>--</td>
<td>--</td>
<td>3</td>
<td>3</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>ENG 1213</td>
<td>English Language Lab*</td>
<td>2</td>
<td>--</td>
<td>--</td>
<td>3</td>
<td>3</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>ENG 1214</td>
<td>NCC/NSS/Sports (Audit)*</td>
<td>2</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

# Department Subjects with respective codes are given separately at the end.

*Common to both Group-A and Group-B
GROUP – B
For the branches of
(EEE, ECE, Mechanical, Marine, Metallurgy, Geo-Informatics, Instrumentation Technology)

II-SEMESTER

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Course</th>
<th>Credits</th>
<th>Lecture Hrs</th>
<th>Tutorial Hrs</th>
<th>Lab Hrs</th>
<th>Total Contact Hrs/Week</th>
<th>Sessional Marks</th>
<th>Exam Marks</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENG 1201</td>
<td>Mathematics-III*</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>--</td>
<td>4</td>
<td>30</td>
<td>70</td>
<td>100</td>
</tr>
<tr>
<td>ENG 1203</td>
<td>Chemistry</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>--</td>
<td>4</td>
<td>30</td>
<td>70</td>
<td>100</td>
</tr>
<tr>
<td>ENG 1205</td>
<td>Comp. Prog. &amp; Num. Methods</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>--</td>
<td>4</td>
<td>30</td>
<td>70</td>
<td>100</td>
</tr>
<tr>
<td>ENG 1207</td>
<td>History of Science &amp; Technology</td>
<td>2</td>
<td>2</td>
<td>--</td>
<td>--</td>
<td>2</td>
<td>30</td>
<td>70</td>
<td>100</td>
</tr>
<tr>
<td>DS 1208</td>
<td>Department Subject #</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>--</td>
<td>4</td>
<td>30</td>
<td>70</td>
<td>100</td>
</tr>
<tr>
<td>ENG 1210</td>
<td>Chemistry Lab</td>
<td>2</td>
<td>--</td>
<td>--</td>
<td>3</td>
<td>3</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>ENG 1212</td>
<td>Comp. Prog. &amp; Num. Methods Lab</td>
<td>2</td>
<td>--</td>
<td>--</td>
<td>3</td>
<td>3</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>ENG 1213</td>
<td>English Language Lab*</td>
<td>2</td>
<td>--</td>
<td>--</td>
<td>3</td>
<td>3</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>ENG 1214</td>
<td>Sports/NCC/NSS (Audit)*</td>
<td>2</td>
<td>--</td>
<td>--</td>
<td>3</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td></td>
<td><strong>26</strong></td>
<td><strong>14</strong></td>
<td><strong>4</strong></td>
<td><strong>9</strong></td>
<td><strong>30</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Department Subjects with respective codes are given separately at the end.
* Common to both Group-A and Group-B
Group – A  
For the branches of  
(Civil, Chemical, CSE, Information Technology)  
&  
Group – B  
For the branches of  
(EEE, ECE, Mechanical, Marine, Metallurgy, Geo-Informatics, Instrumentation Technology)  

ENG 1201: MATHEMATICS-III  

Theory : 3 Periods  
Sessionals : 30  
Tutorial : 1 Period  
Ext. Marks : 70  
Exam : 3 Hrs.  
Credits : 4  

Unit – I  
Solid Geometry  
Equations of Straight Line-Conditions for a line to line in a plane-Coplanar Lines-Shortest Distance between two lines-Intersection of three planes-Equations of Sphere-Tangent Plane to a Sphere-Cone-Cylinder.  

Unit – II  
Multiple Integrals-1  
Double Integrals-Change of Order of Integration-Double Integrals in Polar Coordinates- Triple Integrals-Change of Variables  

Unit – III  
Multiple Integrals-2  
Beta Function-Gamma Function-Relation between Beta and Gamma Function-Error Function or Probability Integral-Area enclosed by Plane Curves-Volumes of Solids-Area of Curved Surface-Calculation of Mass-Centre of Gravity-Moment of Inertia-Principal Axes.  

Unit – IV  
Fourier Series  
Introduction-Euler’s Formulae-Conditions for a Fourier Expansion-Functions having points of discontinuity-Change of Interval-Odd and Even Functions-Expansions of Odd or Even Periodic Functions-Half Range Series-Perseval’s Formula.  

TEXT BOOK:  

REFERENCE BOOKS:  
GROUP – A  
For the branches of  
(Civil, Chemical, CSE, Information Technology)  

ENG 1202 : PHYSICS  

<table>
<thead>
<tr>
<th>Theory</th>
<th>3 Periods</th>
<th>Sessionals</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tutorial Hrs</td>
<td>1 Period</td>
<td>Ext. Marks</td>
<td>70</td>
</tr>
<tr>
<td>Exam</td>
<td>3 Hrs.</td>
<td>Credits</td>
<td>4</td>
</tr>
</tbody>
</table>

Unit – I

**Thermodynamics**  
8 - Hours  

Unit – II

**Electromagnetism**  
16 – Hours  

Unit – III

**Optics**  
12-Hours  
**Interference:** Principles of Super Position – Young’s Experiment – Coherence – Inference in thin films, Wedge shaped film, Newton’s Rings, Michelson Interferometer and its applications.

**Diffraction:** Single slit (Qualitative and Quantitative Treatment)

**Polarization:** Polarization by reflection, refraction and double refraction in uniaxial crystals, Nicol Prism, Quarter and Half wave plate, Circular and elliptical polarization and detection.

Unit – IV

**Lasers**  
14-Hours  

**Fiber Optics**  
Ultrasonics
Introduction, Production of Ultrasonics by Magnetostriction and Piezoelectric effects, Ultrasonics and diffraction pattern, Applications of Ultrasonics.

Unit – V

Modern Physics
De Broglie concept of matter waves, Heisenberg uncertainty principle, Schrödinger time independent wave equation, application to a particle in a box. Free electron theory of metals, Kronig - Penney model (qualitative treatment), Origin of energy band formation in solids, Classification of materials into conductors, semi conductors and insulators .

Superconductivity
Superconductivity, Meisner Effect, Types of Superconductors and Applications of Superconductors.


( 10 Hours )

Books Recommended
1) Engineering Physics by R.K. Gaur and S.L. Gupta
2) Physics by David Halliday and Robert Resnick – Part I and Part II

Reference Books:
1) Engineering Physics by M.N. Avadhanulu & P.G. Kshirasagar; S. Chand & Company Ltd.
2) Modern Engineering Physics by A.S. Vadudeva
3) University Physics by Young and Freedman
4) Nonconventional Energy by Ashok V. Desai
GROUP – A
For the branches of
(Civil, Chemical, CSE, Information Technology)

ENG 1204 : ENGINEERING GRAPHICS

<table>
<thead>
<tr>
<th></th>
<th>Theory : 2 Periods</th>
<th>Sessionals : 30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab Hrs</td>
<td>: 3 Period</td>
<td>Ext. Marks : 70</td>
</tr>
<tr>
<td>Exam</td>
<td>: 3 Hrs.</td>
<td>Credits : 4</td>
</tr>
</tbody>
</table>


Projections of Points: Principal or Reference Planes, Projections of a point situated in any one of the four quadrants

Projections of Straight Lines: Projections of straight lines parallel to both reference planes, perpendicular to one reference plane and parallel to other reference plane, inclined to one reference plane and parallel to the other reference plane. Projections of straight line inclined to both the reference planes:

Projections of Planes: Projection of Perpendicular planes: Perpendicular to both reference planes, perpendicular to one reference plane and parallel to other reference plane and perpendicular to one reference plane and inclined to other reference plane. Projection of Oblique planes. Introduction to Auxiliary Planes.

Projections of Solids: Types of solids: Polyhedra and Solids of revolution. Projection of solids in simple positions: Axis perpendicular to horizontal plane, Axis perpendicular to vertical plane and Axis parallel to both the reference planes. Projection of Solids with axis inclined to one reference plane and parallel to other and axes inclined to both the reference planes.

Projections of Section of Solids: Section Planes: Parallel and inclined section planes, Sections and True shape of section, Sections of Solids: Prism, Pyramid, Cylinder and Cone.

Development of Surfaces: Methods of Development: Parallel line development and radial line development. Development of a cube, prism, cylinder, pyramid and cone.

Isometric Views: Introduction to Isometric projection, Isometric scale and Isometric view. Isometric views of simple planes. Isometric view of Prisms, Pyramids, cylinder and cone. Isometric view of an object when projections are given.

Text Book:

Reference:
GROUP – A  
For the branches of  
(Civil, Chemical, CSE, Information Technology)  

ENG 1206 : PROFESSIONAL ETHICS & MORAL VALUES

<table>
<thead>
<tr>
<th>Theory</th>
<th>2 Periods</th>
<th>Sessionals</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tutorial Hrs</td>
<td>0 Period</td>
<td>Ext. Marks</td>
<td>70</td>
</tr>
<tr>
<td>Exam</td>
<td>3 Hrs.</td>
<td>Credits</td>
<td>2</td>
</tr>
</tbody>
</table>

Unit – I  
**Ethics & Human Values:** Ethics and Values, Ethical Vision, Ethical Decisions, Human Values – Classification of Values, Universality Values. (6 Periods)

Unit – II  
**Engineering Ethics:** Nature of Engineering Ethics, Profession and Professionalism, Professional Ethics, Code of Ethics, Sample Codes – IEEE, ASCE, ASME and CSI. (6 Periods)

Unit – III  
**Engineering as Social Experimentation:** Engineering as Social Experimentation, Engineering Professionals – Life Skills, Engineers as Managers, Consultants and Leaders, Role of Engineers in Promoting Ethical Climate, Balanced Outlook on Law. (6 Periods)

Unit – IV  
**Safety, Social Responsibility and Rights:** Safety and Risk, Moral Responsibility of Engineers for Safety, Case Studies – Bhopal Gas Tragedy, Chernobyl Disaster, Fukushima Nuclear Disaster, Professional Rights, Gender Discrimination, Sexual Harassment at Work Place. (6 Periods)

Unit – V  
**Global Issues:** Globalization and MNCs, Environmental Ethics, Computer Ethics, Cyber Crimes, Ethical Living, Concept of Harmony in Life. (6 Periods)

Text Books:

Subramaniam R., Professional Ethics, Oxford University Press, New Delhi, 2013.

References:

GROUP – A
For the branches of
(Civil, Chemical, CSE, Information Technology)

ENG 1209: PHYSICS LAB

<table>
<thead>
<tr>
<th>Theory</th>
<th>0 Periods</th>
<th>Sessionals</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab Hrs</td>
<td>3 Period</td>
<td>Ext. Marks</td>
<td>50</td>
</tr>
<tr>
<td>Exam</td>
<td>3 Hrs.</td>
<td>Credits</td>
<td>2</td>
</tr>
</tbody>
</table>

List of Experiments

1. Melde’s Experiment – Determination of frequency of an electrically maintained tuning fork.
6. Determination of refractive index of Ordinary ($\mu_0$) and Extraordinary ($\mu_e$) rays
7. Variation of Magnetic field along the axis of current carrying circular coil Stewart and Gee’s apparatus.
8. Carey Foster’s bridge a) laws of resistance b) temperature coefficient of resistance.
10. Determination of Magnetic Moment and Horizontal (M & H) component of Earth’s Magnetic field.
14. Laser – Diffraction
GROUP – A
For the branches of
(Civil, Chemical, CSE, Information Technology)

ENG 1211: WORKSHOP

<table>
<thead>
<tr>
<th>Theory</th>
<th>: 0 Periods</th>
<th>Sessionals : 50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab Hrs</td>
<td>: 3 Period</td>
<td>Ext. Marks : 50</td>
</tr>
<tr>
<td>Exam</td>
<td>: 3 Hrs.</td>
<td>Credits : 2</td>
</tr>
</tbody>
</table>

Carpentry:
Bench Work, tools used in carpentry.
Jobs for Class work – half lap joint, mortise and tenon joint, half – lap dovetail joint, corner dovetail joint, central bridle joint.

Sheet Metal:
Tools used in sheet metal work, Laying development of the sheet metal jobs, soldering.
Jobs for class works – Square tray, taper tray(sides), funnel, elbow pipe joint, 60° pipe joint.

Fitting:
Tools used in fitting work, Different files, chisels, hammers and bech vice.
Jobs for class work – Square, hexagon, rectangular fit, circular fit and triangular fit.

Reference
Group – A  
For the branches of  
(Civil, Chemical, CSE, Information Technology)  

ENG 1213: ENGLISH LANGUAGE LAB  

<table>
<thead>
<tr>
<th>Lab Hrs</th>
<th>: 3</th>
<th>Sessionals</th>
<th>: 50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tutorial</td>
<td>: 0 Period</td>
<td>Ext. Marks</td>
<td>: 50</td>
</tr>
<tr>
<td>Exam</td>
<td>: 3 Hrs.</td>
<td>Credits</td>
<td>: 2</td>
</tr>
</tbody>
</table>

The Language Lab focuses on the production and practices of sounds of language and familiarizes the students with use of English in everyday situations and contexts.

SYLLABUS:

1. English Sound Pattern – Letters  
2. Sounds of English  
3. Pronunciation  
4. Stress and Intonation.

OBJECTIVES:

- To make students recognize the sounds of English through Audio-Visual aids.  
- To help students build their confidence and help overcome their inhibitions and self consciousness while speaking in English. The focus shall be on fluency.  
- To familiarize the students with stress and intonation and enable them to speak English effectively.

LEARNING OUTCOMES:

- Students will be sensitized towards recognition of English sound pattern.  
- The fluency in speech will be enhanced.

Prescribed Text Book:  

Speak Well, the print as well as audio materials, is learner friendly and suitable for use in a multimedia language laboratory. These materials are developed to facilitate practice in improving the intelligibility and communication skills in English, for technical, students at the undergraduate level.

The materials mainly aim at self study, monitory by a teacher whenever essential. The teacher intervention is kept to a minimum, only to give a right direction to the learners.

Communication in any language depends on clarity of speech. This is true of English too. Articulation of the sounds, and pronunciation of sounds from the basis of intelligibility. The few units focus on bringing home the importance of this aspect with copious examples and opportunities for practice. Models of standard pronunciation are given. Explanations are kept short and simple. The IPA symbols, presenting the sound system in English, used in this are the
same as in standard English dictionaries. These symbols are to be used at the recognition level to facilitate the learners’ use of dictionary for pronunciation. Problem areas are pointed out and, where necessary, deviation in the pronunciation of the Indian speakers of English are brought to the notice of the learners.

The units called ‘Interactions’ pay attention to the natural conversational skills in different contexts with focus on various functions of the language. Model conversations are provided as samples. Notes on appropriate expressions used in different situations’ drawn the learners, attention the use of language in context. Exercises and activities reinforce the functions introduced.

Unit-1: Letters and Sounds
Worksheet-1
Unit-2: Interactions-1
Worksheet-2
Unit-3: The Sounds of English
Worksheet-3
Unit-4: Interactions-2
Worksheet-4
Unit-5: Pronouncing Words-Some important patterns
Worksheet-5
Unit-6: Interactions-3
Worksheet-2
Unit-7: Stress and Intonation
Worksheet-2

Reference Books:

DISTRIBUTION AND WEIGHTAGE OF MARKS:

1. The practical examination for the English language lab shall be conducted as per the university norms prescribed for the core engineering practical sessions.
2. For the language lab sessions, there shall be a continuous evaluation during the semester for 50 sessional marks and 50 semester end examination marks.
3. For the 50 sessional marks, 20 marks shall be awarded for day-to-day performance, 10 marks to be awarded by conducting internal lab test(s), and 20 marks for worksheets attached to the lab manual.
4. For the 50 semester end (external) marks, 30 marks shall be awarded for written examination (dialogues, the sounds of English and the stress) and 20 marks for external examiner viva-voce, tested by way of reading a passage or a conversation.

NOTE: The external lab shall be conducted by the teacher concerned with the help of another English faculty of affiliated colleges of the university/other institutions.
GROUP – A
For the branches of
(Civil, Chemical, CSE, Information Technology)

ENG 1214: SPORTS/NCC/NSS

Contact Hrs. : 3 Hrs.  Credits : 2

It is only an audit course and the credits are given based on the attendance. Every student should have a minimum of 75% attendance and as per university rules. Every student should choose either sports or NCC or NSS at the starting of the semester and pursue the same in that semester.
Group – B
For the branches of
(EEE, ECE, Mechanical, Marine, Metallurgy, Geo-Informatics, Instrumentation Technology)

ENG 1203: CHEMISTRY

Theory : 3 Periods       Sessionals : 30
Tutorial : 1 Period       Ext. Marks : 70
Exam : 3 Hrs.       Credits : 4

Chapter – 1: Water Chemistry

Chapter – 2: Solid State Chemistry

Chapter – 3: Polymers and Plastics

Chapter – 4: Corrosion

Chapter – 5: Building Materials
Refractories: Classification – Properties – Engineering Applications
Ceramics: Classification – Properties – Engineering Applications

Chapter – 6: Fuels and Lubricants
Gaseous Fuels: Biogas, LPG and CNG – Characteristics – Applications.
Rocket Fuels: Propellants – Classification – Characteristics

Reference Books:
Group – B
For the branches of
(EEE, ECE, Mechanical, Marine, Metallurgy, Geo-Informatics, Instrumentation Technology)

ENG 1205: COMPUTER PROGRAMMING USING C & NUMERICAL METHODS

<table>
<thead>
<tr>
<th></th>
<th>Theory</th>
<th>Tutorial</th>
<th>Exam</th>
<th>Sessionals</th>
<th>Ext. Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>: 3 Periods</td>
<td>: 1 Period</td>
<td>: 3 Hrs.</td>
<td>: 30</td>
<td>: 70</td>
<td>: 4</td>
</tr>
</tbody>
</table>

Introduction To C: Basic structure of C program, Constants, Variables and data types, Operators and Expressions, Arithmetic Precedence and associativity, Type Conversions. Managing Input and Output Operations, Formatted Input, Formatted Output.

Decision Making, Branching, Looping, Arrays & Strings: Decision making with if statement, Simple if statement, The if…else statement, Nesting of if…else statement, the else..if ladder, switch statement, the (?:) operator, the GOTO statement, The while statement, the do statement, The for statement, Jumps in Loops, One, Two-dimensional Arrays, Character Arrays. Declaration and initialization of Strings, reading and writing of strings, String handling functions, Table of strings.

Functions: Definition of Functions, Return Values and their Types, Function Calls, Function Declaration, Category of Functions: No Arguments and no Return Values, Arguments but no Return Values, Arguments with Return Values, No Argument but Returns a Value, Functions that Return Multiple Values. Nesting of functions, recursion, passing arrays to functions, passing strings to functions, The scope, visibility and lifetime of variables.

Pointers: Accessing the address of a variable, declaring pointer variables, initializing of pointer variables, accessing variables using pointers, chain of pointers, pointer expressions, pointers and arrays, pointers and character strings, array of pointes, pointers as function arguments, functions returning pointers, pointers to functions, pointers to structures-Program Applications

Structure and Unions: Defining a structure, declaring structure variables, accessing structure members, structure initialization, copying and comparing structure variables, arrays of structures, arrays within structures, structures within structures, structures and functions and unions, size of structures and bit-fields- Program applications.

File handling: Defining and opening a file, closing a file, Input/ Output operations on files, Error handling during I/O operations, random access to files and Command Line Arguments- Program Applications.

**Numerical Integration:** Trapezoidal rule, Simpson’s 1/3 rule. **Solutions of Ordinary First Order Differential Equations:** Euler’s Method, Modified Euler’s Method and Runge-Kutta Method.

**Text Books:**
Introduction to Numerical Methods, SS Sastry, Prentice Hall.

**Reference Books:**
Group – B
For the branches of
(EEE, ECE, Mechanical, Marine, Metallurgy, Geo-Informatics, Instrumentation Technology)

ENG 1207 HISTORY OF SCIENCE & TECHNOLOGY

<table>
<thead>
<tr>
<th>Theory</th>
<th>Sessionals</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Periods</td>
<td>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tutorial</th>
<th>Ext. Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Period</td>
<td>70</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exam</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Hrs.</td>
<td>2</td>
</tr>
</tbody>
</table>

Objectives of the Course:

- To know the contributions of the scientists for the development of society over a period of time.
- To understand the Science and Technological developments that lead to human welfare.
- To appreciate the Science and Technological contributions for the development of various sectors of the country.
- To identify the technical transfer versus economic progress of the countries.

Learning Outcome: By the end of this course the students should be able to understand the contribution of Scientific and Technological developments for the benefit of the society at large.

Unit – I
**Historical Perspective of Science and Technology:**
Nature and Definitions; Roots of Science – In Ancient Period and Modern Period (during the British Period); Science and Society; Role of Scientists in the Society. (6 Periods)

Unit – II
**Policies and Plans After Independence:**
Science and Technology Policy Resolutions; New Technology Fund; Technology Development (TIFAC); Programs aimed at Technological Self Reliance; Activities of Council of Scientific and Industrial Research. (6 Periods)

Unit – III
**Science and Technological Developments in Critical Areas:**
**Space** – The Indian Space Program: India’s Geostationary Satellite Services – INSAT System and INSAT Services; **Defense Research and Technology** – Research Coordination, Research efforts and Development of Technologies and Spin-off Technologies for civilian use; **Nuclear Energy** – Effects of a nuclear explosion and India’s safety measures. (6 Periods)

Unit – IV
**Impact of Science and Technology in Major Areas:**
**Ocean Development:** Objective of Ocean Development, Biological Mineral Resources, Marine Research and Capacity Building; **Biotechnology:** Meaning, Biotechnology Techniques-Bioreactors, Cell Fusion, Cell or Tissue Culture, DNA Finger Printing, Cloning, Artificial Insemination and Embryo Transfer Technology and Stem Cell Technology; Application of Biotechnology – Medicine, Biocatalysts, Food Biotechnology, Fuel and Fodder and Development of Biosensors. (6 Periods)
Technology Transfer and Development:
Transfer of Technology – Types, Methods, Mechanisms, Process, Channels and Techniques
Appropriate Technology – Criteria and Selection of an Appropriate Technology; Barriers of Technological Change.  

(6 Periods)

Text Books:
Kalpanma, Science and Technology in India, Published and Distributed by Spectrum Books (P) Ltd., New Delhi-58.
Group – B
For the branches of
(EEE, ECE, Mechanical, Marine, Metallurgy, Geo-Informatics, Instrumentation Technology)

ENG 1210: CHEMISTRY LAB

<table>
<thead>
<tr>
<th>Lab Hrs</th>
<th>2</th>
<th>Sessionals</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tutorial</td>
<td>0 Period</td>
<td>Ext. Marks</td>
<td>50</td>
</tr>
<tr>
<td>Exam</td>
<td>3 Hrs.</td>
<td>Credits</td>
<td>2</td>
</tr>
</tbody>
</table>

1. Determination of Sodium Hydroxide with HCl (Na₂CO₃ Primary Standard)
2. Determination of Fe(II)/Mohr’s Salt by Permanganometry
3. Determination of Oxalic Acid by Permanganometry
4. Determination of Hardness of Water sample by EDTA method
5. Determination of Calcium in Portland Cement by Permanganometry
6. Determination of Chromium (VI) by Mohr’s Salt Solution
7. Determination of Zinc by EDTA method
8. Determination of Alkalinity (Carbonate and Hydroxide) of water sample-(Demonstration)
9. Determination of Strength of the given HCl solution by titrating against NaOH using a pH meter-(Demonstration)
10. Determination of Copper (II) by Iodometric Titration (Demonstration)

Reference Books:
Experiments in Applied Chemistry (For Engineering Students) – Sinita Rattan – S. K. Kataria & Sons, New Delhi.
1. Write a program to read x, y coordinates of 3 points and then calculate the area of a triangle formed by them and print the coordinates of the three points and the area of the triangle. What will be the output from your program if the three given points are in a straight line.

2. Write a program which generates 100 random numbers in the range of 1 to 100. Store them in an array and then print the array. Write 3 versions of the program using different loop constructs (e.g., for, while and do-while).

3. Write a set of string manipulation functions, e.g., for getting a sub-string from a given position, copying one string to another, reversing a string and adding one string to another.

4. Write a program which determines the largest and the smallest number that can be stored in different data types like short, int, long, float, and double. What happens when you add 1 to the largest possible integer number that can be stored?

5. Write a program which generates 100 random real numbers in the range of 10.0 to 20.0 and sort them in descending order.

6. Write a function for transporting a square matrix in place (in place means that you are not allowed to have full temporary matrix).

7. First use an editor to create a file with some integer numbers. Now write a program, which reads these numbers and determines their mean and standard deviation.

8. Implement bisection method to find the square root of a given number to a given accuracy.


10. Given a table of x and corresponding f(x) values, write a program which will determine f(x) value at an intermediate x value using Lagrange’s Interpolation.

11. Write a function which will invert a matrix.

12. Implement Simpson’s 1/3rd rule for numerical integration.

13. Implement Trapezoidal rule for numerical integration.

14. Write a program to solve a set of linear algebraic equations.

15. Write a program to solve a differential equation using Runge-Kutta Method.
Group – B
For the branches of
(EEE, ECE, Mechanical, Marine, Metallurgy, Geo-Informatics, Instrumentation Technology)

ENG 1213: ENGLISH LANGUAGE LAB

<table>
<thead>
<tr>
<th>Lab Hrs</th>
<th>Sessionals</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>50</td>
</tr>
<tr>
<td>Tutorial</td>
<td>Ext. Marks</td>
</tr>
<tr>
<td>0 Period</td>
<td>50</td>
</tr>
<tr>
<td>Exam</td>
<td>Credits</td>
</tr>
<tr>
<td>3 Hrs.</td>
<td>2</td>
</tr>
</tbody>
</table>

The Language Lab focuses on the production and practices of sounds of language and familiarizes the students with use of English in everyday situations and contexts.

SYLLABUS:

5. English Sound Pattern – Letters
6. Sounds of English
7. Pronunciation
8. Stress and Intonation.

OBJECTIVES:

- To make students recognize the sounds of English through Audio-Visual aids.
- To help students build their confidence and help overcome their inhibitions and self-consciousness while speaking in English. The focus shall be on fluency.
- To familiarize the students with stress and intonation and enable them to speak English effectively.

LEARNING OUTCOMES:

- Students will be sensitized towards recognition of English sound pattern.
- The fluency in speech will be enhanced.

Prescribed Text Book:

Speak Well, the print as well as audio materials, is learner friendly and suitable for use in a multimedia language laboratory. These materials are developed to facilitate practice in improving the intelligibility and communication skills in English, for technical, students at the undergraduate level.

The materials mainly aim at self study, monitory by a teacher whenever essential. The teacher intervention is kept to a minimum, only to give a right direction to the learners.

Communication in any language depends on clarity of speech. This is true of English too. Articulation of the sounds, and pronunciation of sounds from the basis of intelligibility. The few units focus on bringing home the importance of this aspect with copious examples and opportunities for practice. Models of standard pronunciation are given. Explanations are kept short and simple. The IPA symbols, presenting the sound system in English, used in this are the
same as in standard English dictionaries. These symbols are to be used at the recognition level to facilitate the learners’ use of dictionary for pronunciation. Problem areas are pointed out and, where necessary, deviation in the pronunciation of the Indian speakers of English are brought to the notice of the learners.

The units called ‘Interactions’ pay attention to the natural conversational skills in different contexts with focus on various functions of the language. Model conversations are provided as samples. Notes on appropriate expressions used in different situations’ drawn the learners, attention the use of language in context. Exercises and activities reinforce the functions introduced.

Unit-1: Letters and Sounds
   Worksheet-1
Unit-2: Interactions-1
   Worksheet-2
Unit-3: The Sounds of English
   Worksheet-3
Unit-4: Interactions-2
   Worksheet-4
Unit-5: Pronouncing Words-Some important patterns
   Worksheet-5
Unit-6: Interactions-3
   Worksheet-2
Unit-7: Stress and Intonation
   Worksheet-2

Reference Books:

DISTRIBUTION AND WEIGHTAGE OF MARKS:

5. The practical examination for the English language lab shall be conducted as per the university norms prescribed for the core engineering practical sessions.
6. For the language lab sessions, there shall be a continuous evaluation during the semester for 50 sessional marks and 50 semester end examination marks.
7. For the 50 sessional marks, 20 marks shall be awarded for day-to-day performance, 10 marks to be awarded by conducting internal lab test(s), and 20 marks for worksheets attached to the lab manual.
8. For the 50 semester end (external) marks, 30 marks shall be awarded for written examination (dialogues, the sounds of English and the stress) and 20 marks for external examiner viva-voce, tested by way of reading a passage or a conversation.

NOTE: The external lab shall be conducted by the teacher concerned with the help of another English faculty of affiliated colleges of the university/other institutions.
Group– B
For the branches of
(EEE, ECE, Mechanical, Marine, Metallurgy, Geo-Informatics, Instrumentation Technology)

ENG 1214: SPORTS/NCC/NSS

Contact Hrs. : 3 Hrs.  Credits : 2

It is only an audit course and the credits are given based on the attendance. Every student should have a minimum of 75% attendance and as per university rules. Every student should choose either sports or NCC or NSS at the starting of the semester and pursue the same in that semester.
Department Subjects
Group – A  
For the branch of Civil Engineering  

CIV 1208: ENGINEERING GEOLOGY

<table>
<thead>
<tr>
<th></th>
<th>Theory : 2 Periods</th>
<th>Sessionals : 30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab Hrs</td>
<td>: 3 Period</td>
<td>Ext. Marks : 70</td>
</tr>
<tr>
<td>Exam</td>
<td>: 3 Hrs.</td>
<td>Credits : 4</td>
</tr>
</tbody>
</table>


**Petrology & Minorlorgy**


**Mineralogy:** physical properties: form, color, luster, cleavage, fracture, hardness and specific gravity. Study of important rock forming minerals: Silicate sturcutres, Quartz, feldspars, pyroxenes, amphiboles, micas and clays.

**Statigraphy & Structural geology**

**Statigraphy:** Time scale, Major geological formations of India. Achaearns, Cuddapahs, Vindyans, Gondwanas and Deccan Traps. Mineral resources of Andhra Pradesh.


**Remote sensing and Geophysical methods**


References:

2. Engineering Geology by N.Chennakesavulu, Mc-Millan, India Ltd. 2005
4. Engineering and general geology by Parbin Singh – Katson Publishing house
6. Engineering Geology by K.M.Bangaru
Group – A
For the branch of Computer Science & Systems Engineering
(Common with IT)

CSE 1208: PROBABILITY, STATISTICS AND QUEING THEORY

<table>
<thead>
<tr>
<th>Theory</th>
<th>2 Periods</th>
<th>Sessionals</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab Hrs</td>
<td>3 Period</td>
<td>Ext. Marks</td>
<td>70</td>
</tr>
<tr>
<td>Exam</td>
<td>3 Hrs.</td>
<td>Credits</td>
<td>4</td>
</tr>
</tbody>
</table>

Course Objectives:
1) To discuss basics of probability and related theorems, Problems. To study about conditional probability and Bayes theorem.
2) To study about random variables and their properties. To examine, analyze and compare Probability distributions.
3) To discuss regression and estimation techniques.
4) To discuss various types of tests such as F-test, Chi-square test. To study the various queuing models.

Course Outcomes:
At the end of the course student will be able to
1) ability to solve various problems regarding probability and conditional probability.
2) Examine, analyze and compare probability distributions.
3) Prepare null and alternative hypothesis and test its validity based on random sample.
4) ability to solve various types of regression problems.
5) Ability to understand various queuing models.


3. **Probability Distributions:** Discrete Distributions: Binomial, Poisson Negative Binominal Distributions and their Properties; Continuous Distributions: Uniform, Normal, Exponential Distributions and their Properties.

4. **Multivariate Analysis and Curve Fitting:** Correlation, Correlation Coefficient, Rank Correlation, Regression Analysis, Multiple Regression, Principles of Least Squares and Curve Fitting

5. **Estimation and testing of hypothesis:** Sample, Populations, Statistic, Parameter, Sampling Distribution, Standard Error, Un-Biasedness, Efficiency, Maximum Likelihood Estimator, Notion & Interval Estimation.

7. **Queuing Theory**: Queue Description, Characteristics of a Queuing Model, Study State Solutions of M/M/1: Model, M/M/1 ; N Model, M/M/C: Model, Case Studies

**Text Books**:

1. Probability & Statistics for Engineers and Scientists, Walpole, Myers, Myers, Ye. Pearson Education.

**Reference Books**:

GROUP – B
For the branch of Electrical and Electronics Engineering

EEE 1208: ENGINEERING MECHANICS & STRENGTH OF MATERIALS

<table>
<thead>
<tr>
<th>Theory</th>
<th>2 Periods</th>
<th>Sessionals : 30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab Hrs</td>
<td>3 Period</td>
<td>Ext. Marks : 70</td>
</tr>
<tr>
<td>Exam</td>
<td>3 Hrs.</td>
<td>Credits : 4</td>
</tr>
</tbody>
</table>

ENGINEERING MECHANICS

STATICS:

Forces in Plane: Concurrent and Parallel Forces in a plane and their equilibrium, General case of forces in a plane, Plane Trusses.

Centroids: Centroids of composite plane figures.


DYNAMICS:


Rotation of a Rigid Body about a Fixed Axis: kinematics, equation of motion of a rigid body about a fixed axis, rotation under constant moment, Torsional vibration.

STRENGTH OF MATERIALS

Stress and Strains: Simple Stresses and Strains, stresses on incline plane, 2-dimensional stress systems, principal stress and principal planes.

Shear Force and Bending Moment Diagrams: Types of loads, Types of Supports, Shear force and Bending moment diagrams for cantilever and simply supported beams under concentrated loads and under uniformly distributed loads.

Bending Stresses in Beams: Flexure formula, Bending stresses in the above types of beams with rectangular and circular sections.

Torsions of Circular Shafts: Torsion equation, determination of shear stresses.

Textbooks:

1. Engineering Mechanics by Timo Shenko & Young (relevant sections only)
2. Elements of strength of materials by S. Timo Shanko (relevant sections only)
Group – B
For the branch of Electronics and Communication Engineering

ECE 1208: BASIC ELECTRONICS ENGINEERING

<table>
<thead>
<tr>
<th>Theory</th>
<th>2 Periods</th>
<th>Sessionals</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab Hrs</td>
<td>3 Period</td>
<td>Ext. Marks</td>
<td>70</td>
</tr>
<tr>
<td>Exam</td>
<td>3 Hrs.</td>
<td>Credits</td>
<td>4</td>
</tr>
</tbody>
</table>

1. **Common Electronic materials and properties:**
   Conductors, Insulators, Semi Conductors, Intrinsic, Extrinsic semiconductors, conduction in semiconductors, charge mobility, Fermi Dirac function, Fermi level, charge densities, diffusion current density, drift current density, Hall effect.

2. **Passive Components, Circuit Theorems and Basic meters:**
   Types of passive components, types of resistors, resistor color code, capacitors, concept of charging and discharging, types of capacitances, inductors, mutual inductance, inductance of two coils, KCL, KVL, common meters, CRO.

3. **Fundamentals of diodes and special diodes:**
   Elementary concepts, V-I characteristics and applications of PN junction diode, Varactor diode, Zener diode, LED, Tunnel diode, Photo diode, Schottky diode and PIN diode.

4. **Fundamentals of BJT, FET and MOSFET (Elementary concepts):**
   Transistor construction, Operation of the transistor, transistor configuration, input and output characteristics, applications of transistor in three configurations, comparison of BJT and JFET, JFET construction, operation of FET, JFET characteristics, JFET configurations and applications, concept of MOSFET, types of MOSFETs.

5. **Basic concepts of Power devices and Integrated Circuits (ICs):**
   Construction, applications and features of UJT, SCR, DIAC and TRIAC, introduction to Integrated Circuits, classification of ICs, salient features of OP-AMP, characteristics of an ideal OP-AMP and applications, salient features of 555 timer and applications.

**Text Books:**

   Reference Books:
   2. Electronic Devices and Circuits by **Sanjeev Guptha**.
Group – B
For the branch of Mechanical Engineering

MECH 1208: METALLURGY AND MATERIALS ENGINEERING

| Theory | : 2 Periods | Sessionals | : 30 |
| Lab Hrs | : 3 Period | Ext. Marks | : 70 |
| Exam | : 3 Hrs. | Credits | : 4 |

**Structure of crystalline solids:** Atomic structure & bonding in solids- Crystal structures- calculations of radius, Coordination Number and Atomic Packing Factor for different cubic structures - Imperfection in solids, point defects, Linear defects, Planar defects and Volume defects- Concept of Slip & twinning.

**Phase diagrams:** Basic terms- phase rule- Lever rule & free energy of phase mixtures cooling curves- Phase diagram & phase transformation - construction of phase diagrams- binary phase diagrams - Brass, Bronze, Al-Cu and A1Si phase diagrams- Invariant reactions, eutectic, , peritectic, eutectoid, peritectoid, metatetic & monotectic reactions, Iron carbon phase diagram & microstructures of plain carbon steel & cast iron

**Heat treatment:** Heat treatment of steel- Annealing, and its types, normalizing, hardening, tempering, martemering, austempering - TTT diagrams, drawing of TTT diagram, TTT diagram for hypo-& hypereutectoid steels, effect of alloying elements, CCT diagram- Martensitic transformation, nature of martensitic transformation- Surface hardening processes like case hardening, carburizing, cyaniding, nitriding Induction hardening, hardenabilty, Jominy end-quench test, Age hardening of Al & Cu alloys Precipitation Hardening

**Engineering Alloys:** Properties, composition, microstructure and uses of low carbon, mild medium & high carbon steels. stainless steels, high speed steels, Hadfield steels, tool steels - Cast irons, gray CI, white CI, malleable CI, SC iron-The light alloys- Al & Mg & Titanium alloys- Copper & its alloys: brasses & bronzes- super alloys, Smart materials- Nano materials.

**Composite Materials:** Classification of composite materials, dispersion strengthened, particle reinforced and fiber reinforced composite laminates properties of matrix and reinforcement materials and structural applications of different types of composite materials.

**Text Books:**

References
Group – B
For the branch of Naval Architecture and Marine Engineering

NAM 1208: INTRODUCTION TO NAVAL ARCHITECTURE

<table>
<thead>
<tr>
<th>Theory</th>
<th>2 Periods</th>
<th>Sessionals</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab Hrs</td>
<td>3 Period</td>
<td>Ext. Marks</td>
<td>70</td>
</tr>
<tr>
<td>Exam</td>
<td>3 Hrs.</td>
<td>Credits</td>
<td>4</td>
</tr>
</tbody>
</table>


3. Classification of ships and other Marine platforms. Definition and general arrangement of typical ships and Marine platforms.

4. Ship terminology and their meaning. Ship lines and procedure to draw them.

5. Introduction to ship construction / production process. Visit to Shipyard.

6. Economics of waterway transportation.

7. Domain of Naval Architecture Studies and role of a Naval Architect.

8. Challenges and state of the art.


Textbook:

Introduction to Naval Architecture by Eric Tupper- Butterworth Heinemann Publications
Group – B
For the branch of Geo-Informatics

GINF 1208: GEOMORPHOLOGY

<table>
<thead>
<tr>
<th>Theory</th>
<th>2 Periods</th>
<th>Sessionals</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab Hrs</td>
<td>3 Period</td>
<td>Ext. Marks</td>
<td>70</td>
</tr>
<tr>
<td>Exam</td>
<td>3 Hrs.</td>
<td>Credits</td>
<td>4</td>
</tr>
</tbody>
</table>

Unit I

Definition and scope of geomorphology; Fundamental concepts in geomorphology; Endogenetic processes: volcanism and tectonism; Exogenetic processes: weathering, Mass-wasting and erosion; geomorphic agents.

Unit II

Fluvial processes and landforms: valleys and valley forming processes - associated features; Alluvium – active and relict alluvium; Floodplain morphology; Types of streams - Genetic classification of streams; Alluvial fans and deltasShore Zone processes and landforms: shore line, shore zone and coast; Wind waves, tides, littoral currents, storm surges and tsunamis; Erosional and depositional landforms

Unit III

Glacial processes and landforms: ice and glaciers; types of glaciers; glacial motion; Regimen of glaciers – nourishment and wastage of glaciers; active, passive and dead glaciers; erosional and depositional landforms.Eolian processes and landforms; dominance of wind processes in arid and semi-arid regions; erosional and depositional landforms

Unit IV

Scope and significance of soil studies; soil and regolith; soil forming factors – geological, climatic, topographical, biological and time factors; Soil components – mineral matter, organic matter, soil-water and soil-air; Soil Properties – colour, texture, structure, acidity and alkalinity; soil profile; Pedogenic regimes – laterisation, gleisation, podzologisation, calcification and salinisation; soil classifications – zonal system, and Seventh approximation system.

Unit V

Applied geomorphology: landform interpretation for groundwater explorations; mineral exploration – surface expressions of ore bodies; weathering residues, placer deposits; applications in engineering projects: route selection – highways, canals, transmission lines; site selections – dam sites, industries; townships

Text Books

Group – B
For the branch of Instrumentation Technology

INST 1208: MATERIAL SCIENCE

<table>
<thead>
<tr>
<th>Theory</th>
<th>: 2 Periods</th>
<th>Sessionals : 30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab Hrs</td>
<td>: 3 Period</td>
<td>Ext. Marks : 70</td>
</tr>
<tr>
<td>Exam</td>
<td>: 3 Hrs.</td>
<td>Credits : 4</td>
</tr>
</tbody>
</table>


**Semiconducting Materials**: Intrinsic and Extrinsic semiconductors-different semi conducting materials-band shapes of real semiconductors- direct and Indirect band gap materials- Fermi energy level and P-N junction diode,homojunction and Heterojunction- Transistor action.

**Composite materials.** General Characteristics of Composite materials  A. Fibers – Glass, Carbon, Ceramic and Aramid fibers. B. Matrices – Polymer, Graphite, Ceramic and Metal Matrices – Characteristics of fibers and matrices.

**Text Books**:

3. Material Science and Engineering by V.Raghavan-prentice Hall of India, New Delhi
Group – B
For the branch of Metallurgical Engineering

MET 1208: ELEMENTS OF MATERIAL SCIENCE

<table>
<thead>
<tr>
<th>Theory</th>
<th>: 2 Periods</th>
<th>Sessionals</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab Hrs</td>
<td>: 3 Period</td>
<td>Ext. Marks</td>
<td>70</td>
</tr>
<tr>
<td>Exam</td>
<td>: 3 Hrs.</td>
<td>Credits</td>
<td>4</td>
</tr>
</tbody>
</table>

Introduction, classification of materials, Space Lattice and unit cells, crystal systems, Indices of planes and directions. Structure of common metallic materials.

**Crystal Defects:** Point, Line and Surface defects. Dislocations, types, Burgers’ Vector, Dislocation movement by slip, climb and cross slip, Dislocation sources.

**Plastic Deformation of single crystals:** Deformation by slip, CRSS for slip, deformation by twinning, Strain hardening of single crystals

**Textbooks:**

1. Material Science and Engineering by V. Raghavan.

**Reference books:**


Physical Metallurgy, Vijendra Singh.

00o