ANDHRA UNIVERSITY

Regulations and Syllabus relating to

BACHELOR OF TECHNOLOGY (B.Tech.)
GEONFORMATICS ENGINEERING
DEGREE EXAMINATION
(Under Semester System)
(with effect from 2013-2014)

REGULATIONS

1. The Degree of Bachelor of Technology (4 – year course) / Bachelor of Engineering (4 – year course) will be conferred on a candidate who satisfies the following conditions.

1.1 (i) Candidates shall have passed (a) the two year Intermediate Examination with Mathematics and Physical Sciences as optional subjects under Part-III conducted by the Board of Intermediate Education, Andhra Pradesh.

 OR

(b) The Intermediate Examination with vocational courses in Engineering and Technology conducted by Board of Intermediate Education, Andhra Pradesh.

 OR

(c) The Diploma Examination in Engineering of State Board of Technical Education and Training, Andhra Pradesh, provided they pass 10th Class examination of Board of Secondary Education, Andhra Pradesh or its equivalent examination.

 OR

(d) An examination recognized by the Academic Senate of the Andhra University as equivalent to the aforesaid examinations with a minimum of 12 years of schooling with Mathematics and Physical Sciences.

(ii) Candidates must have qualified themselves at the Entrance examination(s) as prescribed by the University for purpose of admission into B.Tech./B.E. courses.

(iii) Candidates from other countries and other states permitted to study B.Tech./B.E. courses by the Govt. of India may be exempted by the Executive Council from appearing for the entrance examination, provided they satisfy all other conditions.

1.2 (i) The normal duration of the course is four academic years for B.Tech./B.E. Degree. The first academic year shall comprise of semester I & II combined together and each of the subsequent academic years shall be divided into two semesters hereinafter referred to as 2nd year Semester – 1, 2nd year Semester – II, 3rd year Semester – 1, 3rd year Semester – II and so on in chronological order.
(ii) Candidates shall have pursued a regular course of study, as detailed below, for not less than four years and shall have fulfilled the academic requirements laid down and shall have passed all the prescribed examinations.

2.1 A regular course of study during an academic year/semester means a minimum attendance of 75% of all the subjects of the year / semester, as the case may be, computed by

First year common to all branches of BE/B.Tech of AU

totaling the number of periods of lectures, workshops laboratories, drawing, tutorials, project and any other practicals, held in every subject over the year / semester as specified in the schemes of instruction.

However, in special case and for sufficient cause shown, the Vice-Chancellor may, on the recommendation of the Principal and Head of the Department concerned, condone the deficiency in the average attendance to an extent of 9% for reasons such as ill-health, if the application for condonation is submitted at the time of actual illness and is supported by certificate of authorized Medical Officer approved by the Principal.

In the case of students, who participate in activities like N.S.S., N.C.C., Inter-collegiate tournaments conducted by Andhra University, Inter-University tournaments conducted by the Inter-University Board and any such other activities involving the representation of the College/University with the prior approval of the Principal, the candidate may be deemed to have attended the college during the actual period of such activity, solely for the purpose of attendance.

2.2 A candidate who cannot satisfy the attendance requirements as specified in clause 2.1, because of late admission under special circumstances, reasonable and acceptable to the University on the basis of documents, shall attend at least 50% of the total scheduled periods during that academic year and shall have attended at least 90% of the total periods of instructions held from the date of admission.

2.3 A candidate, who fails to satisfy the regulation under clause 2.1 or 2.2, shall not be allowed for the University examinations at the end of the year in case of first year or semester and shall not be allowed for promotion to the next semester of study. He / she shall be required to repeat the entire regular course of study of that academic year in case of first year or semester in case of semester.

2.4 The criteria for promotion from 1 year to II/IV Semester – 1 and to subsequent Semesters is based on the requisite attendance put up by the candidate and satisfactory completion of the course of study during the year / semester.

2.5 (i) If a candidate fails more than three subjects or if he obtains less than 50% aggregate in the first year, he shall not be promoted to third year.

(ii) If a candidate fails in more than three subjects or if he obtains less than 50% aggregate in the Semester – I and Semester – II of the 2nd year putting together, he shall not be promoted to fourth year.

3.1 The schemes of instruction and examination for the first year course shall be on annual pattern. The period of instruction shall ordinarily be from July to April and shall comprise
of a minimum of 180 instruction days. The year-end examinations shall ordinarily be held during the month of May.

3.2 The schemes of instruction and examination for courses other than 1 year shall be on semester pattern. The period of instruction for Semester – I of each year (from 2nd year to final year) shall ordinarily be from July to November and for Semester – II of each year (from 2nd year to final year) shall ordinarily be from December to April. Each semester shall comprise of a minimum of 16 weeks of instruction. The end examinations of Semester – I of each year shall ordinarily be held during the month of November and that of Semester – II of each year shall ordinarily be held during the month of May of the academic year.

3.3 Three shall be no supplementary examinations except for Semester – I and Semester – II of the final year. The supplementary examinations shall ordinarily be held during the month of June/July for Semester – I and Aug./Sept. for Semester – II of the final year.

4.1 The examinations for the B.Tech./B.E./B. Arch. Degree shall be conducted as per the prescribed Schemes for the following branches of study:

(iii) for B.Arch. Degree (5 – Years course) and for any other branch of Engineering / Technology as and when approved by the University from time to time.

4.2 There shall be Regular Examinations at the end of Year / Semester as listed below.

B.Tech./B.E./B. Arch. 1 Year
B.Tech./B.E./B. Arch. Semester – I of 2nd year
B.Tech./B.E./B. Arch. Semester – II of 2nd year
B.Tech./B.E./B. Arch. Semester – I of 3rd year
B.Tech./B.E./B. Arch. Semester – II of 3rd year
B.Tech./B.E./B. Arch. Semester – I of 4th year
B.Tech./B.E./B. Arch. Semester – II of 4th year
B. Arch. Semester – I of 5th year
B. Arch. Semester – II of 5th year
Supplementary Examinations shall be conducted only for
B.Tech./B.E. Semester – I & II of 4th year
B.Arch. Semester – I & II of 5th year
5. Assessment for the award of the Degree shall consist of

(i) Internal evaluation of the work done by the students during the year / semester for 30 marks in each theory subject and for 50 marks or such other marks prescribed in the scheme of examination, in each practical and project.

(ii) Year / semester end examination as detailed in the scheme of examination for 70 marks in each theory subject and for 50 marks or such other marks prescribed in the scheme of examination, in each practical and project.

5.1 The marks for the internal evaluation shall be awarded by the concerned teachers based on class work, quiz, viva-voce, two mid-examinations etc., according to a scheme / schedule to be notified by the Department at the beginning of the year / semester.

5.2 The year / semester and examination in each theory subject, for a maximum of 70 marks, shall be conducted by the University through duty constituted Boards of Examiners.

5.3 The year / semester end examination in practicals / project for 50 marks or such other marks prescribed in the scheme of examination, shall be conducted by the University by two examiners one of them being external to the college.

5.4 Candidates shall be required to produce complete and certified records of the work done by them in each of the practical subjects at the time of year / semester end practical examination, failing which they will not be allowed for such examination.

6.1 A candidate shall be declared to have passed in any subject (theory/practical) if he / she secures in the University examinations, not less than 40% in theory and not less than 50% in practicals, provided that the result otherwise not withheld.

6.2 A candidate shall be deemed to have satisfied the minimum requirement for the award of the Degree; (i) If he / she is declared to have passed all the subjects (theory and practicals) included in the Scheme of Examination of I year and subsequent six semesters for the award of B.Tech./B.E. Degree and subsequent eight semesters for the award of B.Arch. Degree. and

(ii) If he/she secures 50% marks in the overall aggregate of both the University examinations and sessional marks put together of all the subjects of B.Tech./B.E./B.Arch. course.

6.3 Candidates, who fail to satisfy clause 6.2 (ii) may be permitted to attain the overall aggregate upto 50% within 4 years after completing the course of study by appearing at the University examinations only of B.Tech./B.E./B.Arch. subjects of their choice. The so attained overall aggregate shall be limited to 50% only. Any candidate who fails to attain the minimum aggregate of 50% even after such appearances, during a total of eight academic years from the year of admission, shall become ineligible for the award of B.Tech./B.E./B.Arch. Degree.

6.4 A candidate may be permitted to improve his/her performance by reappearing for the whole of the University examinations, only in all the theory subjects of a year / semester, after completion of the 4-year/5-year course of study, as the case may be, and during the four consecutive examinations only.
Such an improvement can be availed of only once, for each of the annual / semester examinations of the course of study, provided that all the subjects of the year / semester shall have been passed as per the clause 6.1. When considered in its totally, better of the two performances (as a whole but not subject wise) shall be taken into consideration for the purpose of awarding First Class. There shall be no subject wise improvement permitted in any year / semester of study for the above purpose. In any case, no such improvement shall be permitted after completion of eight academic years from the year of admission.

6.5 There shall be no provision for the improvement of sessional marks in any theory or practical subject in any year / semester of study.

7. Whenever there is a change of regulations, scheme and syllabi (such as from Unit pattern to Semester System), a candidate who fails in any subject or who wants to improve his/her performance as per clause 6.4, will be permitted to appear for the University examinations conducted during the subsequent 4 years only, under the previous regulations, scheme and syllabi. There after, such candidates shall be required to appear for such examinations under new regulations and syllabi in the equivalent subjects as decided by the Board of Studies.

8. All the candidates who have satisfied the minimum requirement as specified above, shall be arranged in two classes based on the aggregate marks obtained in the examinations of I year to final year for the award of B.Tech./B.E./B.Arch. Degree.

9. The marks obtained will be converted to grades on a 10 point scale and then to Semester Grade point Average(SGPA) and subsequently Cumulative grade point average is awarded at the end of the course by University.
1st Year (Common with all the B.E./B.Tech. courses)

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>Lab</th>
<th>Total</th>
<th>Univ. Exam</th>
<th>Sessl. Marks</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENG 101</td>
<td>English & Language Lab</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>ENG 102</td>
<td>Mathematics – I</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>ENG 103</td>
<td>Mathematics – II</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>ENG 104</td>
<td>Physics</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>ENG 105</td>
<td>Chemistry</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>ENG 106</td>
<td>Computer Programming and Numerical Methods</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>ENG 107</td>
<td>Engineering Graphics</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>ENG 108</td>
<td>Social Science</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>4</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>ENG 109</td>
<td>Physics Lab</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>ENG 110</td>
<td>Chemistry Lab</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>ENG 111</td>
<td>Workshop</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>ENG 112</td>
<td>C – Programming Lab</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
</tbody>
</table>

Total | 23 | 2 | 12 | 37 | - | 760 | 440 | 1200 | 37

Note: In addition to the above it is also included NSS/Sports as an audit course with compulsory attendance having 2 credits with 2 hours/week in the first year
2nd Year Semester – I

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>Lab</th>
<th>Total</th>
<th>Univ. Exam</th>
<th>Sessl. Marks</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>GI 211</td>
<td>Information Technology and Applications</td>
<td>4</td>
<td></td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>70</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>GI 212</td>
<td>Mathematics – III</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>GI 213</td>
<td>Fundamentals of Geology</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>GI 214</td>
<td>Object Oriented Programming-I: C++</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>GI 215</td>
<td>Geomorphology</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>GI 216</td>
<td>Surveying</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>70</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>GI 217</td>
<td>Geology and Geomorphology Practical</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>50</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>GI 218</td>
<td>Surveying Practical</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>50</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>24</td>
<td>4</td>
<td>12</td>
<td>40</td>
<td>520</td>
<td>280</td>
<td>800</td>
<td>28</td>
</tr>
</tbody>
</table>

Note: In addition to the above it is also included NCC as an audit course with compulsory attendance having 2 credits with 2 hours/week.

2nd Year Semester – II

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>Lab</th>
<th>Total</th>
<th>Univ. Exam</th>
<th>Sessl. Marks</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>GI 221</td>
<td>Fundamentals of Atmospheric Systems</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>GI 222</td>
<td>Photogrammetry and Photo interpretation</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>GI 223</td>
<td>Remote Sensing – I</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>GI 224</td>
<td>Environmental Studies</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>70</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>GI 225</td>
<td>Object Oriented Programming-II: JAVA</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>70</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>GI 226</td>
<td>Probability and Statistics</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>GI 227</td>
<td>Photogrammetry and Remote Sensing Practical</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>50</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>GI 228</td>
<td>Object Oriented Programming Practical</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>50</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>24</td>
<td>4</td>
<td>12</td>
<td>40</td>
<td>520</td>
<td>280</td>
<td>800</td>
<td>26</td>
</tr>
</tbody>
</table>

Note: In addition to the above it is also included Ethics & Morals as an audit course with compulsory attendance having 2 credits with 2 hours/week.
3rd Year Semester – I

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>Lab</th>
<th>Total</th>
<th>Univ. Exam</th>
<th>Sessl. Marks</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>GI 311</td>
<td>Principles of Physical Oceanography</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>GI 312</td>
<td>Digital Image Processing – I</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>GI 313</td>
<td>Database Management Systems</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>GI 314</td>
<td>Operations Research</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>GI 315</td>
<td>Remote Sensing–II</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>GI 316</td>
<td>Elective – I</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>GI 317</td>
<td>Digital Image Processing – I Practical</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>GI 318</td>
<td>Database Management Systems Practical</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>GI 319</td>
<td>Soft Skills</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>FE-01</td>
<td>Free Elective-I</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
</tbody>
</table>

Total

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>Lab</th>
<th>Total</th>
<th>Univ. Exam</th>
<th>Sessl. Marks</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>GI 311</td>
<td>Principles of Physical Oceanography</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>GI 312</td>
<td>Digital Image Processing – I</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>GI 313</td>
<td>Database Management Systems</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>GI 314</td>
<td>Operations Research</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>GI 315</td>
<td>Remote Sensing–II</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>GI 316</td>
<td>Elective – I</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>GI 317</td>
<td>Digital Image Processing – I Practical</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>GI 318</td>
<td>Database Management Systems Practical</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>GI 319</td>
<td>Soft Skills</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>FE-01</td>
<td>Free Elective-I</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
</tbody>
</table>

Total

Elective-I GI 316-1 Geoinformatics for Environmental Monitoring
GI 316-2 Geoinformatics for Earth Science Applications

3rd Year Semester – II

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>Lab</th>
<th>Total</th>
<th>Univ. Exam</th>
<th>Sessl. Marks</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>GI 321</td>
<td>Web Programming and Applications</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>GI 322</td>
<td>Geographic Information Systems-I</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>GI 323</td>
<td>Elements of Cartography</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>GI 324</td>
<td>Geodesy and GPS</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>GI 325</td>
<td>Digital Image Processing – II</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>GI 326</td>
<td>Elective – II</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>GI 327</td>
<td>Geographic Information Systems-I Practical</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>GI 328</td>
<td>Digital Image Processing–II Practical</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>GI 329</td>
<td>Industrial Training (Summer vacation)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Total

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>Lab</th>
<th>Total</th>
<th>Univ. Exam</th>
<th>Sessl. Marks</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>GI 321</td>
<td>Web Programming and Applications</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>GI 322</td>
<td>Geographic Information Systems-I</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>GI 323</td>
<td>Elements of Cartography</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>GI 324</td>
<td>Geodesy and GPS</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>GI 325</td>
<td>Digital Image Processing – II</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>GI 326</td>
<td>Elective – II</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>GI 327</td>
<td>Geographic Information Systems-I Practical</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>GI 328</td>
<td>Digital Image Processing–II Practical</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>GI 329</td>
<td>Industrial Training (Summer vacation)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Total

Elective-II GI 326-1 Geoinformatics for Ocean Resources Evaluation
GI 326-2 Mathematical Morphology in Image Processing

8
4th Year Semester - I

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>Lab</th>
<th>Total</th>
<th>Univ. Exam Hrs</th>
<th>Univ. Exam Marks</th>
<th>Sessl</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>GI 411</td>
<td>Digital Photogrammetry</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>GI 412</td>
<td>Geological Engineering</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>GI 413</td>
<td>Computer Graphics</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>GI 414</td>
<td>Urban Planning and Information Systems</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>GI 415</td>
<td>Principles of Economics and Management</td>
<td>4</td>
<td>-</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>GI 416</td>
<td>Elective – III</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>GI 417</td>
<td>Digital Photogrammetry Practical</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>50</td>
<td>50</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>GI 418</td>
<td>Urban Planning and Information Systems</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>50</td>
<td>50</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>GI 419</td>
<td>Industrial Training & Seminar (Assessment)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>24</td>
<td>4</td>
<td>12</td>
<td>40</td>
<td>-</td>
<td>520</td>
<td>380</td>
<td>900</td>
<td>30</td>
</tr>
</tbody>
</table>

Elective-III: GI 416-1 Geoinformatics for Watershed Management
GI 416-2 Geoinformatics for Soil and Agriculture Surveys

4th Year Semester – II

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>Lab</th>
<th>Total</th>
<th>Univ. Exam Hrs</th>
<th>Univ. Exam Marks</th>
<th>Sessl</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>GI 421</td>
<td>Geographic Information Systems – II</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>6</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>GI 422</td>
<td>Data Mining & Neural Networks</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>6</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>GI 423</td>
<td>Elective-IV</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>6</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>GI 424</td>
<td>Geographical Information Systems – II Practical</td>
<td>-</td>
<td></td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>50</td>
<td>50</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>GI 425</td>
<td>Project Work</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>9</td>
<td>3</td>
<td>50</td>
<td>50</td>
<td>100</td>
<td>8</td>
</tr>
<tr>
<td>FE 02</td>
<td>Free Elective-2</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>4</td>
</tr>
</tbody>
</table>

Elective-IV: GI 423-1 Geoinformatics for Coastal Zone Management
GI 423-2 Geoinformatics for Forestry and Ecology

Total: 16 6 15 37 - 380 220 600 26
Eng 101 English & Language Lab

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam</th>
<th>Sessnl. Marks</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>-</td>
<td>3</td>
<td>3 Hrs. 70</td>
<td>30</td>
<td>100</td>
<td>2+1</td>
</tr>
</tbody>
</table>

Vocabulary: (i) One word Substitute; (ii) Words Often Confused; (iii) Synonyms and Antonyms (iv) Foreign Phrases; (v) Phrasal verbs derived from the dynamic verbs: GO, PUT, TAKE, LOOK, RUN and TURN; (vi) Idioms and Phrases.

Grammar: (i) Spotting the error in a sentence; (ii) Correction of errors in a given sentence; Correction of errors in given sentence; Correction of errors in given sentence- errors in the use of words – errors in constructing a sentence – errors of Indianisms – use of slang-errors in punctuation; (iii) Concord; (iv) Tense and uses of Tenses; (v) Spelling; (vi) Articles, prepositions and words followed by prepositions.

Reading: Comprehensions: Location the Topic sentence – Main idea – Subordinate idea; Pickout definitions, factual information, Reference and Inferences.

Writing: Precis writing, note making and note taking, letter writing, technical report writing, general essay writing.

Textbook: An anthology of prose selections reflecting the Indian Culture and the Contemporary social problems.

Prescribed Book: Remedial English Grammar by F.T. Wood.

Oral Communication: a) Social interaction; b) Mock interviews; c) Formal, Semi-formal-Informal Situations; d) Household situations; e) Office, f) Post Office/Bank/Railway Station; g) Telephonic – Face to Face Communication.

Group Discussion: (ESP – English for specific purpose) Project proposals – Project Reports – How to prepare for a meeting – How to write minutes of a meeting – How to write a research paper and dissertations.
I. PARTIAL DIFFERENTIATION AND ITS APPLICATIONS
Functions of two or more variables, partial derivatives, Homogeneous functions-Euler’s theorem, total derivative, differentiation of implicit functions, geometrical interpretation-tangent plane and normal to a surface, change of variables, Jacobians, Taylor’s theorem for functions of two variables, errors and approximations, total differential, maxima and minima of functions of two variables, Lagrange’s method of undetermined multipliers, differentiation under the integral sign-Leibnitz rules.

II. SOLID GEOMETRY
Equation of a plane, equations of straight line, condition for a line to lie in a plane, coplanar lines, shortest distance between two lines, intersection of three planes, equation of sphere, tangent plane to a sphere, cone, cylinder, quadric surfaces.

III. MULTIPLE INTEGRALS AND THEIR APPLICATIONS
Double integrals, change of order of integration, Double integrals in polar coordinates, areas enclosed by plane curves, triple integrals, volumes of solids, change of variables, area of a curved surface, calculation of mass, centre of gravity, centre of pressure, Moment of inertia, product of inertia, principal axes, Beta function, Gamma function, relation between Beta and Gamma functions, Error function or probability integral.

IV. INFINITE SERIES
Definitions, convergence, divergence and oscillation of a series, general properties, series of positive terms, comparison test, Integral test, D-Alembert’s Ratio test, Raabe’s test, Logarithmic test, Cauchy’s root test, Alternating series- Leibnitz’s rule, series of positive or negative terms, power series, convergence of Exponential, Logarthmic and Binomial series, Uniform convergence, Weirstrass M- test, Properties of Uniformly convergent series. (All tests without proofs)

V. FOURIER SERIES
Euler’s formulae, conditions for a Fourier expansion, Functions having points of discontinuity, Change of interval, Odd and Even periodic functions-Expansions of Odd and Even periodic functions, Half-range Series, Parseval’s Formula, Practical Harmonic Analysis.

TEXT BOOKS:

REFERENCE BOOKS:
ENG 103 – Mathematics II

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam</th>
<th>Sessnl. Total</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>-</td>
<td></td>
<td>3</td>
<td>3</td>
<td>70</td>
<td>30</td>
</tr>
</tbody>
</table>

I. LINEAR ALGEBRA
Rank of a matrix, Eigen values and Eigen vectors of a matrix, Cayley- Hamilton theorem, consistency of linear simultaneous algebraic equations, Matrix inversion, Gaussian Elimination, LU factorization, Jacobi and Gauss- Siedel iterative methods for solving simultaneous equations, Determination of Eigen values using forward iteration (Rayleigh’s power Method), Hermitian and Skew-Hermitian matrices, Unitary matrix, Quadratic forms and Canonical forms.

II. ORDINARY DIFFERENTIAL EQUATIONS OF FIRST ORDER AND APPLICATIONS
Formation of differential equations, solution of a differential equation-geometrical meaning, equations of the first order and first degree, Variables separable, homogeneous equations, linear equations, Bernoulli’s equation, Exact equations, Equations reducible to exact equations, equations of the first order and higher degree, Clairaut’s equation.

Applications: Orthogonal Trajectories; Simple Electric Circuits, Chemical reactions, Newton’s law of cooling only.

III. LINEAR DIFFERENTIAL EQUATIONS
Higher order linear differential equations with constant coefficients, Cauchy’s and Legendre’s linear equations, simultaneous linear equations with constant coefficients.

IV. SERIES SOLUTION OF DIFFERENTIAL EQUATIONS
Series solution of ODE - Frobenius method (when x=0 is a regular singularity), Bessel’s Equation, Equations reducible to Bessel’s equation; Legendre polynomials, Rodrigue’s formula, generating function, Recurrence relations, Orthogonality relation for Bessel functions and Legendre polynomials.

V. LAPLACE TRANSFORMS
Transforms of elementary functions, properties of Laplace transforms, existence conditions, Inverse transform, transforms of derivatives, transforms of integrals, multiplication by t, division by t, convolution theorem, applications to Ordinary Differential equations and simultaneous linear equations with constant coefficients, Laplace transforms of Unit step function, Unit Impulse function and Periodic functions.

TEXT BOOKS:

REFERENCE BOOKS:
ENG 104 – Physics

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam Hrs.</th>
<th>Sessnl. Marks</th>
<th>Total Marks</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
</tbody>
</table>

Ultrasonics: Production of Ultrasonics by Magnetostriction and Piezo Electric Effects – Ultrasonics and diffraction pattern. Applications of Ultrasonics.

ENG 105 - Chemistry

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam</th>
<th>Sessnl. Marks</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>4</td>
</tr>
</tbody>
</table>

Elementary treatment of materials used in information technology: Liquid Crystals – Polythiophene – Cellulose Acetate – Silicon Metal – Germanium, Gallium Arsenide – Gallium Phosphide – Arsenic – Boron – Iron Oxide (FeO) – Iron sulphide (FeS) – Zinc Oxide (ZnO) – Cadmium Sulphide (CdS) – Cesium – Lithium – Ferric Chloride (FeCl3).

Fuel Technology: Motor fuels – Petroleum – Refining – Knocking and Octane Number of Gasoline – Cetane Number of Diesel Oil, Synthetic Petrol - LPG – Applications. Rocket Fuels – Propellants.

Lubricants: Classification – Properties – Mechanism – Selection of Lubricants of Engineering operations.

Pollution and its control: Air Pollution – Chemical Characteristics – Carbon, Sulphur and Nitrogen Compounds – Acid Rain – Green House Effect – Monitoring of air pollution – Control of air pollution with regard to Carbon, Sulphur and Nitrogen Compounds.

ENG 106 - Computer Programming & Numerical Methods

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam</th>
<th>Sessnl. Marks</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
</tbody>
</table>

Objectives: To make the student familiar with programming in C and enable the student to implement the numerical methods described in this course using C as Programming Language.

Section A Computer Programming in

Basics: Variables – Constants – Expressions – Operators and their precedence and associativity. Basic input and output statements. Control structures. Simple programs in C using all the operators and control structure.

Functions: Concept of a function – Parameters and how they are passed – Automatic Variables – Recursion – Scope and extent of variables. Writing programs using recursive and non-recursive functions.

Arrays and Strings: Single and multidimensional arrays – Character array as a string – Functions on strings. Writing C Programmes using arrays and for string manipulation.

Structures: Declaring and using structures – Operations on structures – Arrays of structures – User defined data types – Pointers to using files.

Files: Introduction – file structure – File handing functions – file types – Files – Error handing – C Programming examples for using files.

Section B

Books

Section A: Programming with C by K.R. Venugopal and Sudeep R Prasad.

Section B: Introduction to Numerical Methods by S.S. Sastry

Elementary Numerical Methods by S.D. Conte.

Reference: C Programming Language by Kerningham & Ritchie.
Principles Of Graphics
Two-dimensional geometrical construction – conic sections, involutes and cycloids –
Representation of three dimensional objects – principles of projections – Standard codes of principles.

Orthographic Projections
Projections of points, straight lines and planes – Auxiliary projections – Projections and sectioning of solids – Intersection of surfaces – Development of surfaces.

Pictorial Projections
Isometric projections – Perspectives – Free hand sketching.

Computer Graphics
Hardware-Display technology – Software – Introduction to drafting software.

Text Books

Reference

Society

Science and technology and society Role of science and technology on development of various societies – Ancient society – Valued system – Agriculture and industrial development – Technological changes and their influence on social, economic and political systems – Basic differences on rural and urban development strategies.

Engineers and national development

Limitation of technological solutions – Engineering ethics and professionalism need of engineer to consider societal needs – interaction with the society at planning, implementation and management stages – Participatory management – Desirable organizational units.
ENG 109 – Physics Lab

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam</th>
<th>Sessnl. Exam</th>
<th>Total</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
<td>50</td>
<td>100</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

ENG 110 - Chemistry Laboratory

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam</th>
<th>Sessnl. Exam</th>
<th>Total</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
<td>50</td>
<td>100</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

ENG 111 – Workshop

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam</th>
<th>Sessnl. Marks</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>50</td>
<td>100</td>
<td>2</td>
</tr>
</tbody>
</table>

1. **Carpentry**: Bench work, tools used in carpentry. Jobs for class work – half lap joint, mortise and tenon joint, half – lap dovetail joint, corner dovetail joint, bridle joint.

3. **Fitting**: Tools used in fitting work. Different files, chisels, hammers and bench vice. Jobs for class work – hexagon, rectangular, circular and triangular fits. External and internal threads with dies and taps.

ENG 112 C - Programming Lab

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam</th>
<th>Sessnl. Marks</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>50</td>
<td>100</td>
<td>2</td>
</tr>
</tbody>
</table>

1. Write a program to read x,y coordinates of 3 points and then calculate the area of a triangle formed by them and print the coordinates of the three points and the area of the triangle. What will be the output from your program if the three given points are in a straight line? 2. Write a program, which generates 100 random integers in the range of to 100. Store them in an array and then print the arrays. Write 3 versions of the program using different loop constructs. (e.g. for, while and do while) 3. Write a set of string manipulation functions e.g. for getting a sub-string from a given position, Copying one string to another, Reversing a string, adding one string to another. 4. Write a program which determines the largest and the smallest number that can be stored in different data types like short, int., long, Float and double. What happens when you add 1 to the largest possible integer number that can be stored? 5. Write a program, which generates 100 random real numbers in the range of 10.0 to 20.0, and sort them in descending order. 6. Write a function for transposing a square matrix in place (in place means that you are not allowed to have full temporary matrix). 7. First use an editor to create a file with some integer numbers. Now write a program, which reads these numbers and determines their mean and standard deviation. 8. Given two points on the surface of the sphere, Write a program to determine the smallest arc length between them. 9. Implement bisection method to find the square root of a given number to a given accuracy. 10. Implement Newton Raphson method to det. a root of polynomial equation. 11. Given a table of x and corresponding f(x) values, write a program which will determine f(x) value at an intermediate x value using Lagrange’s interpolation. 12. Write a function, which will invert a matrix. 13. Implement Simpson’s rule for numerical integration. 14. Implement Gaussian quadrature for numerical integration. 15. Write a program to solve a set of linear algebraic equations.
GI 211 Information Technology and Applications

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam</th>
<th>Sessional</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hrs.</td>
<td>Marks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>-</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
</tbody>
</table>

Unit I Computer Fundamentals
Introduction to computers, types of computers, basic components of computer systems- CPU-memory, Input devices-Keyboard, smart cards, Light pen, touch screen, mouse, digitizer.
Output devices – Video display devices, flat panel display, printers, audio output (chap 9)

Unit II Data Acquisition: Chapters (2,3,4,5)
Acquisition of Numbers and Textual Data: Input units, internal representation of numeric data, representation of characters, error detecting codes.
Acquisition of image data: Acquisition of textual data, pictures, storage format for pictures, fundamentals of image compression, image acquisition with digital camera.
Acquiring Audio Data: basics of audio signals, acquiring and storing audio signals.
Acquisition of Video: Capturing a moving scene with a video camera, compression of video data, MPEG compression standard.

Unit III Computer Software (chap 10)
Overview of Operating Systems: operating system fundamentals, software – system software, application software (overview of Word, Excel, PowerPoint). Overview of Windows; Linux (Windows-Desktop-Control panel -Start menu; Operations on file (new, save, copy, edit, etc)

Unit IV
Business Information Systems and E-commerce (Chap 16, 17)
Types of information needed by organizations, Management structure and information needs, design of an operational information system, system life cycle, computer system for transaction processing
E-commerce: Introduction, Business to business, business to customer and customer to customer e-commerce, their advantages and disadvantages. E-commerce system architecture, payment schemes, electronic cheque payment, Cash transactions, EDI, Intellectual properties rights and e-commerce.

Unit V
Computer Networks and Internet (Chapter 8, 15)
Overview of computer Networks and Internet: computer networks - LA N, WAN and their applications, intranet, naming computers connected to internet.
Some Internet Applications: Email, Information browsing, WWW, Information retrieval from the web, Other facilities provided by the browser, audio on the internet, pictures, animation, video on the internet. Introduction to applications such as Google maps and Google earth

Text books
1. *Introduction to Information technology* by V. Rajaraman, PHI

Reference Books: Introduction to Computers by Peter Norton
GI 212 Engineering Mathematics-III

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam</th>
<th>Sessnl.</th>
<th>Total</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hrs.</td>
<td>Marks</td>
<td>Hrs.</td>
<td>Marks</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>-</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
</tbody>
</table>

I. VECTOR CALCULUS
Differentiation of vectors, curves in space, velocity and acceleration, relative velocity and relative acceleration, scalar and vector point functions, vector operator \(\nabla \) applied to scalar point functions- gradient, \(\nabla \) applied to vector point functions- divergence and curl. Physical interpretation \(\nabla f \), \(\nabla \cdot \overrightarrow{F} \), \(\nabla \times \overrightarrow{F} \), \(\nabla \) applied twice to point functions, \(\nabla \) applied to products of two functions; \(\nabla \), Irrotational and Solenoidal fields. Integration of vectors, line integral, circulation, work done, surface integral-flux, Green’s theorem in the plane, Stoke’s theorem, volume integral, Gauss Divergence theorem. Introduction of orthogonal curvilinear coordinates, cylindrical and spherical polar coordinates.

II. INTRODUCTION OF PARTIAL DIFFERENTIAL EQUATIONS

III. APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS
Method of separation of variables, One dimensional wave equation-vibrations of a stretched string, one dimensional Heat equation, Two dimensional heat flow in steady state - solution of Laplace’s equation in Cartesian and polar coordinates (two dimensional).

IV. INTEGRAL TRANSFORMS

TEXT BOOKS:

REFERENCE BOOKS:
GI 213 Fundamentals of Geology

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam</th>
<th>Sessional</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>-</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
</tbody>
</table>

Unit – I: General Geology

Branches of Geology – Solar system, Origin of the Earth, Age of the Earth, Interior of the Earth, Isostasy, Elements of seismology, Earthquakes, Volcanoes, Elementary knowledge on continental drift and plate tectonics with evidences. Groundwater

Unit – II: Mineralogy

Crystal symmetry, forms, twinning; crystal chemistry; optical mineralogy, classification of minerals, diagnostic physical and optical properties of rock forming minerals. Study of the following rock forming minerals – Olivine family, Quartz family, Feldspar family, Amphibole Family, Pyroxene family, Mica family, Garnet – Processes of ore mineral formation – Coal and petroleum – origin and occurrence in India

Unit – III: Petrology

Igneous rocks classification, forms, Structures and textures – Description of Granite, Syenite, Diorite, Gabbro, Pegmatite, Dolerite and Basalt **Sedimentary rocks** - classification, forms, structures and textures- Description of sandstone, limestone, shale, Conglomerate and breccia.

Metamorphic rocks - classification, forms, structures and textures-Description of Quartzite, Marble, Slate, Phyllite, Gniess and Schist, Khondalite, Charnockite. Igneous and metamorphic provinces of India

Unit – IV: Structural Geology

Strike, Dip, Plunge; Description and classification of folds, faults, Joints and Unconformities; Use of Brunton compass; Clinometer compass

Stratigraphy: Stratigraphic principles; Geological time scale, major stratigraphic divisions of India. Major geological formation of India: Archaeans group, Cuddapahs system, Vindhyan formations, Gondwana system, Deccan traps, siwaliks . Geology and Mineral Resources of Andhra Pradesh.

Unit – V: Engineering Geology:

Geophysical Investigations (Electrical, Seismic survey) for constructions of dams, reservoirs, buildings, roads, coastal structures, and Tunnels. Importance of geology in construction and development of civil Engineering projects.

Textbooks

Reference

GI 214 Object Oriented Programming-I: C++

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam</th>
<th>Sessnl.</th>
<th>Total</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hrs.</td>
<td>Marks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
</tbody>
</table>

Unit – I

Overview of object oriented programming (OOP): OOP paradigm, basic concepts underlying OOP: data abstraction and encapsulation, objects and classes, inheritance, polymorphism
Operator overloading, function overloading, single inheritance, multiple inheritance.

Unit – II

Review of Language constructs of C used in C++: variables, types and type declarations, user defined data types; increment and decrement operators, relational and logical operators; if then else clause; conditional expressions, input and output statement, loops, switch case, arrays, stacks, queues, structure, unions, functions, pointers; preprocessor directives and examples of these applications in C++

Unit – III

Creation of Classes and Objects, accessing class members, Private Vs Public, Constructor and Destructor, Objects, Member Functions, Method definition, Inline Function Implementation, Constant member functions, Overloading Member Functions, Need of operator overloading, prefix and postfix, overloading binary operators and examples in C++

Unit – IV

Inheritance and types, protected data, private data, public data, inheriting constructors and destructors, constructor for virtual base classes, constructors and destructors of derived classes, and virtual functions, size of a derived class, order of invocation.

Unit – V

Polymorphism and Virtual Functions, Importance of virtual function, abstract base classes and pure virtual functions, virtual destructors, File and Streams Components of a file, different operation of the file, communication in files, creation of file streams, stream classes, header files, updating of file, opening and closing a file, file pointers and their manipulations, functions manipulation of file pointers, detecting end-of file.
Textbooks

References:
1) Object Oriented Programming using C++ by B Chandra, Narosa Publishing House Pvt, Ltd., Daryaganj, New Delhi 110002
2) Object Oriented Programming using C++ by R Rajaram, New age International (P) Ltd, Publishers New Delhi
GI 215 Geomorphology

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam</th>
<th>Sessnl. Marks</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>-</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
</tbody>
</table>

Unit I
Definition and scope of geomorphology; Fundamental concepts in geomorphology; Endogenetic processes: volcanism and tectonism; Exogenetic processes: weathering, Mass-wasting and erosion; geomorphic agents.

Unit II
Fluvial processes and landforms: valleys and valley forming processes - associated features; Alluvium – active and relict alluvium; Floodplain morphology; Types of streams - Genetic classification of streams; Alluvial fans and deltas

Shore Zone processes and landforms: shore line, shore zone and coast; Wind waves, tides, littoral currents, storm surges and tsunamis; Erosional and depositional landforms

Unit III
Glacial processes and landforms: ice and glaciers; types of glaciers; glacial motion; Regimen of glaciers – nourishment and wastage of glaciers; active, passive and dead glaciers; erosional and depositional landforms.

Eolian processes and landforms; dominance of wind processes in arid and semi-arid regions; erosional and depositional landforms

Unit IV
Scope and significance of soil studies; soil and regolith; soil forming factors – geological, climatic, topographical, biological and time factors; Soil components – mineral matter, organic matter, soil-water and soil-air; Soil Properties – colour, texture, structure, acidity and alkalinity; soil profile; Pedogenic regimes – laterisation, gleisation, podzologisation, calcification and salinisation; soil classifications – zonal system, and Seventh approximation system.

Unit V
Applied geomorphology: landform interpretation for groundwater explorations; mineral exploration – surface expressions of ore bodies; weathering residues, placer deposits; applications in engineering projects: route selection – highways, canals, transmission lines; site selections – dam sites, industries; townships

Text Books
GI 216 Surveying

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam Hrs.</th>
<th>Univ. Exam Marks</th>
<th>Sessnl. Marks</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>4</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>4</td>
</tr>
</tbody>
</table>

Unit – 1
Principles of Surveying, Classification of Surveying, Introduction to various traditional surveys – Chain Surveying: Instruments, Sources of errors – Compass Surveying: Definitions of Bearings, Theory of Magnetic Compass, Problems and errors in compass survey – Plane Table Surveying: Working Operations, Leveling – Centering – Orientation, Methods of Plane Table Surveying.

Unit – 2

Unit – 3
Tacheometric Surveying – Principles of Tacheometry, Stadia method - Principle of Stadia method, Distance and Elevation formulae for staff vertical & staff normal, Subtense method - Principle of Subtense method, vertical base observations, horizontal base subtense measurement, methods of reading the staff, Tangential method – constant base tangential measurements, variable base tangential measurements.

Unit – 4

Unit – 5

Text Books
B.C. Punmia, Surveying (Volume 2) Laxmi Publications
Paul R Wolf and Bon A. Dewitt, Elements of Photogrammetry – With Application in GIS, McGraw-Hill
GI 217 Geology and Geomorphology Practical

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam</th>
<th>Sessnl.</th>
<th>Total</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>50</td>
<td>100</td>
<td>2</td>
</tr>
</tbody>
</table>

a. Geology exercises
- Geological maps and sections
- Identification of some important rock forming minerals
- Description and Identification of typical rocks
- Description structural models-folds, faults and joints

b. Geomorphology exercises
- Description of landform models
- Topographic profiles – projected and composite profiles
- Preparation of slope maps
- Stream profiles from topographic maps
- Landform interpretation from topographic maps
- Drainage Morphometry

GI 218 Surveying Practical

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam</th>
<th>Sessnl.</th>
<th>Total</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>6</td>
<td>3</td>
<td>50</td>
<td>100</td>
<td>2</td>
</tr>
</tbody>
</table>

- Chain survey
- Prismatic Compass survey
- Dumpy Level Survey
- Plane Table Survey
- Total Station Survey
- GPS Survey
- Integration of field surveys with various software.
GI 221 Fundamentals of Atmospheric Systems

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam Hrs.</th>
<th>Univ. Exam Marks</th>
<th>Sessnl. Marks</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>-</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>4</td>
</tr>
</tbody>
</table>

Unit I
Insolation and Heat Budget: Insolation, solar constant, distribution, atmospheric depletion of solar radiation, heat budget, latitudinal heat budget. Temperature of the atmosphere: Heat and temperature, processes of heat energy transfer, heating and cooling of atmosphere; Controls of temperature; Distribution of temperature: Air temperature and its measurement, measurement of sunshine and insolation; Horizontal distribution, seasonal distribution, vertical distribution, temperature inversion.

Unit II
Air Pressure and winds: Measurement of air pressure, variations of air pressure and weather, pressure gradient; Pressure variations: diurnal and seasonal; basic atmospheric pressure patterns; vertical variation in air pressure; horizontal distribution of pressure; seasonal variations in pressure pattern;
Wind: Factors affecting wind direction and speed, wind observation and measurement; wind shift.
General circulation of the atmosphere: Thermal circulation on non-rotating earth, thermal circulation on a rotating earth. Surface wind systems. Departure from idealized circulation pattern; Surface wind systems; Latitudinal shifting of wind belts; Longitudinal variations in air flow patterns; Winds in tropical region; Sub tropical winds; Westerlies; polar winds; Jet stream

Unit III
Atmospheric Moisture: Sources of atmospheric moisture, humidity measurements, evaporation, factors affecting evaporation, potential evapotranspiration;
Clouds: Formation and classification.
Precipitation: Causes, forms, processes, and types, observations of precipitation, regional distribution and seasonal variation of precipitation, artificial precipitation.
Monsoons: Economic importance of monsoon, concepts of the origin of monsoon, Asian monsoon; Indian monsoon, burst of monsoon, climatic significance of monsoon.

Unit IV
Weather disturbances:
Air masses: source regions, classification, air mass modification.
Fronts: General characteristics, frontogenesis and frontolysis, classification of fronts
Tropical disturbances: Types of tropical disturbances, origin of tropical cyclones, movement and tracks of hurricanes, hurricane seasons, regional distribution.
Thunderstorms, tornadoes and waterspouts: Thunderstorms-origin and structure, stage of development, Thunderstorm electricity and thunder, precipitation in thunder storm, classification and distribution; tornadoes and waterspouts

Unit V
Weather forecasting and analysis: Historical background, how weather forecasting in done, types of weather forecasts, weather forecasting methods, satellites in weather forecasting.
Applied climatology: climate and natural vegetation, climate and agriculture, climate and animal husbandry, climate and housing, Air pollution and health, climate and human comfort, climate and urban planning

Textbooks:
GI 222 Photogrammetry and Photo interpretation

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam Hrs.</th>
<th>Marks</th>
<th>Sessnl. Marks</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>-</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>4</td>
</tr>
</tbody>
</table>

Unit I
Fundamentals of Photogrammetry and photo interpretation; History of aerial photography; Types of photographs: vertical and oblique photographs.
Aerial cameras: lens, optical axis, focal length, focal plane and fiducial marks; Principal Point;
Geometry of vertical photographs

Unit II
Scale on vertical photographs – over flat terrain and variable terrain; average photo scale;
Methods of determining the scale on vertical photographs
Overlap, side lap and flight planning
Stereoscopic viewing of vertical photographs; Depth perception; Stereoscopes and their use;
Vertical exaggeration – factors involved and determination

Unit III
Relief Displacement on vertical photographs
Determination of horizontal ground lengths, directions and angles from photo coordinates
Parallax: Y-parallax and X-Parallax; Parallax measurement – monoscopic method and
stereoscopic method – principle of floating mark

Unit IV
Aerial mosaics: comparison with maps
Elements of air photo pattern: rock types, landforms, surface drainage patterns, erosion features,
gray tones, vegetative and land use details

Unit V
Applications of aerial photographic techniques in soil surveys; forest surveys, agricultural and
land use planning; geological and geomorphological investigations; civil engineering projects

Textbooks
2. ‘Remote Sensing and image Interpretation’ by Thomas M. Lillesand and R.W. Kiefer,
 John Wiley & Sons, Inc., 2000
3. ‘Aerial Photographic interpretation’ by Donald R. Lueder, McGraw-Hill 1959
Unit – I Introduction:
Remote sensing system, Observe Earth from space
Remote sensing-A historic prospective, Indian remote sensing programme
The earth Observation Evolution – Paradigm shift, Legal and ethical aspect.
Electro Magnetic Radiation (EMR): Velocity of EM radiation, Propagation of EM waves,
Attenuation, quantum nature of EM radiation, Thermal emission, EM radiation for Remote sensing
Physical Basis of Signature: Signature in the Reflective OIR region, Thermal Infrared (TIR), Microwave region.

Unit – II EMR Interaction with Atmosphere
EMR Interaction with Earth materials: Spectral signature concepts – Factors affecting spectral reflectance of materials. Instruments used to study the spectral reflectance – spectrophotometer – spectro-radiometer

Unit – III Remote Sensor – An overview
Classification of Remote sensor, selection of sensor parameters, spatial resolution, spectral resolution, radiometric resolution, Temporal resolution
Optical and Infrared sensors: Quality of Image in Optical system, Imaging mode, Photographic camera, Television camera, Opto-mechanical scanners, Opto-mechanical scanners operated from satellites, Push broom cameras, Whisk broom cameras. Microwave sensors

Unit- IV Platforms

Unit-V Image Interpretation
Introduction to image Interpretation.
Basic principles of Image Interpretation
Elements of Image Interpretation
Techniques of image Interpretation and interpretation Keys
Methods of searching and sequence of Interpretation
Methods of analysis and Reference levels

Textbooks

References
GI 224 Environmental Studies

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam Hrs.</th>
<th>Sessional Marks</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>-</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
</tbody>
</table>

Module 1: Introduction – Definition, scope and importance; measuring and defining environmental development indicators
(1 Lecture)

Module 2: Ecosystems: introduction, types, characteristic features, structure and functions of Ecosystems – Forest, Grassland, Desert, Aquatic (lakes, rivers and estuaries)
(2 Lectures)

Module 3: Environment and natural Resource Management:
Land resources – land as a resource; Common property resources; Land degradation; Soil erosion and desertification; effects of modern agriculture; fertilizer-pesticide problems
Forest resources – Use and over-exploitation
Mining and Dams – their effect on forest and tribal people
Energy resources – Energy needs; renewable and non-renewable energy sources; use of alternative energy sources; impact of energy use on environment
(8 Lectures)

Module 4: Bio-diversity and its conservation
Value of bio-diversity – consumptive and productive use; social, ethical aesthetic and option values
Bio-geographical classification of India – India as mega diversity habitat
Treats to bio-diversity – hotspots; habitat loss; poaching of wildlife; loss of species; seeds, etc.
Conservation of bio-diversity – in situ and ex situ conservation
(3 Lectures)

Module 5: Environmental Pollution – Local and Global Issues
Causes, effects and control measures of air pollution, indoor air pollution; Water pollution; Soil pollution; Marine pollution; Noise pollution; Solid waste management – composting, vermiculture; Urban and industrial wastes, recycling and re-use
Nature of thermal pollution and nuclear hazards; Global warming; Acid rain; Ozone depletion
(8 Lectures)

Module 6: Environmental problems in India: Drinking water; Sanitation and public health; Effects of activities on the quality of environment, Urbanisation, Transportation, Industrialisation, Green revolution; Water scarcity and Groundwater depletion; Controversies on major dams – resettlement and rehabilitation of people – problems and concerns; Rainwater harvesting; cloud seeding and watershed management
(5 Lectures)
Module 7: Economy and Environment: The economy and environment interaction, Economics of development, preservation and conservation; Sustainability – theory and practice; Limits of growth; Equitable use of resources for sustainable lifestyles; Environmental impact assessment (4 Lectures)

Module 8: Social issues and the environment: Population growth and environment; Environmental education; Environmental movements; Environment vs. development
Energy resources: Energy needs; renewable and non-renewable energy sources; Use of alternative energy sources; Impact of energy use on environment (2 Lectures)

Module 9: Institutions and governance: Regulation by government; Monitoring and enforcement of environmental regulation; Environmental Acts: Water (Prevention and control of pollution) act; Air (prevention and control of pollution) act; Environmental protection act; Wildlife protection act; Forest conservation act; Coastal zone regulations
Institutions and policies relating to India
Environmental governance (5 Lectures)

Module 10: International conventions: Stockholm Conference 1972; Earth Summit 1972; World Commission for Environmental Development (WCED) (2 Lectures)

Module 11: Case Studies: Chipko Movement; Narmada Bachao Andolan; Silent Valley Project; Madhura Refinery and Taj Mahal; Industrialisation of Pattancheru; Nuclear Reactor at Nagarjuna Sagar; Tehri dam; Ralegaon Siddhi (Anna Hazare); Kolleru Lake – aquaculture; Fluorosis in Andhra Pradesh (3 Lectures)

Module 12: Fieldwork:
Visit to a local area to document and mapping of environmental assets - river/forest/grass/land/hill/mountain
Study of local environment – common plants, insects, birds
Study of simple ecosystems – pond, river, hillslopes, etc
Visits to industries – water treatment plants, effluent treatment plants (5 Lectures)

Textbooks
2. Principles of Environmental Science and Engineering, P. Venugopala Rao, Pretice-Hall India (P) Ltd., New Delhi
3. Environmental Sciences, P.D. Sarma
4. Environmental Studies, S. Mukherjee and A. Ghosh, Books and Allied (P) Ltd., Kolkata
GI 225 Object Oriented Programming-II: JAVA

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam</th>
<th>Sessional Marks</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hrs.</td>
<td>Marks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>-</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
</tbody>
</table>

Unit 1
Fundamentals of Object-Oriented Programming: Basic concepts, benefits and applications

JAVA Evolution: Features of java, relation with Internet and WWW

Unit 2

Unit 3
Advanced OOP in Java: Arrays, Strings and Vectors
Inheritance basics, Member access and inheritance, Using super class, Creating a multilevel hierarchy, Method overriding, Dynamic method dispatch, Using abstract classes, Using final with inheritance, The object class.

Unit 4
Packages: Putting Classes Together, Defining a package, Understanding classpath, Importing Packages, Defining an interface, Implementing interfaces, Applying Interfaces, Variable in interfaces.
Multithreaded Programming, Managing Errors and Exceptions

Unit 5
Applet Programming: The applet class, Applet architecture, An applet skeleton: Initialization and termination, Overriding update, Status window, Handling events: The event class, Processing mouse events, Handling keyboard events, HTML applet tag, Passing parameters to applets, Applet context and show document, The audio clip & applets tub interface, Outputting to the console. Swing concepts, JDBC connectivity
Managing Input / Output Files in JAVA

Text Books:
Programming with Java: A Primer, 3E, E BALAGURUSAMY, Tata McGraw Hill

The Complete Reference JAVA, Patrick Naughton and Herbert Schildt, Tata McGraw-Hill Publishing Company Ltd
GI 226 Probability and Statistics

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam</th>
<th>Sessnl. Marks</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>-</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>100</td>
<td>4</td>
</tr>
</tbody>
</table>

Unit-I
Probability and Random Variables
Probability concepts, Random variables, Moments, Moment Generating function,
Binomial, Poisson, Geometric, Negative binomial, Exponential, Gamma, Weibull
distributions, Functions of random variable, Chebychev inequality.

Unit –II
Two Dimensional Random Variables
Marginal and conditional distributions, Covariance, Correlation and Regression, Transformation
of random variables, Central limit theorem.

Unit – III
Random Processes
Classification, Stationary and Markov processes, Poisson process, pure birth process, Birth and
death process, Markov chains, Markovian queueing models.

Unit – IV
Reliability Engineering
Concepts of reliability, Hazard function, Series and parallel systems, Reliability and
Availability of Markovian systems, Maintainability, Preventive maintenance.

Unit – V
Design of Experiments and Quality Control
Completely randomised design, Randomised block design, Latin square design, Process control,
Control charts of measurements and attributes, Tolerance limits.

Textbooks
Miller, I.R and Freund, J.D., Probability and Statistics for engineers, Prentice-Hall, 1995
Bhat, U.N, Elements of applied stochastic processes, Wiley Series in Probability and
Mathematical statistics, New York, 1983
GI 227 Photogrammetry and Remote Sensing Practical

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam</th>
<th>Sessnl.</th>
<th>Total</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>3</td>
<td>50</td>
<td>100</td>
<td>2</td>
</tr>
</tbody>
</table>

a. Aerial Photographic interpretation
Testing stereo vision; Use of Lens stereoscope and Mirror stereoscope; Use of Parallax Bar for height calculation from aerial photographs; Calculation of scale of the photographs; Marking Principal point and conjugate principal point on the stereopairs; Preparation of aerial mosaics; Identification of aerial photographs for identification of landforms of fluvial, Aeolian, glacial, coastal, volcanic and arid processes; Identification of tectonic elements from aerial photographs.

b. Remote Sensing Practical
Operating Spectral radiometer in the field to collect radiometric values from various natural and artificial features of land surface; Identification of various land features from the satellite images in association with topo sheets and field visits; Calculations of coverage of satellite images for different latitudes, number of swath paths for various satellites; Study of imagery indexes; Visual study of single band images; Visual study of multi-spectral images; Preparation of base maps from the topographic maps; Preparation of thematic maps from visual interpretation.

GI 228 Object Oriented Programming Practical

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam</th>
<th>Sessnl.</th>
<th>Total</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>3</td>
<td>50</td>
<td>100</td>
<td>2</td>
</tr>
</tbody>
</table>

Cycle - I
Write a function using variables as arguments to swap the values of a pair of integers.
Write a program to read a matrix of size m*n from the keyboard and display the same on the screen.
Define a class to represent a bank account including the following members:- Data members: a) Name of the depositors; b) Account number; c) Type of account; d) Balance amount in the account and Member function - To assign initial values, To deposit an amount, To withdraw an amount after checking the balance, To display the name and balance.
Create a class Float that contains 2 float data members. Overload all the 4 arithmetic operators so that to operate on the objects of float.
Operations related to file handling.

Cycle – II
Write programs in JAVA to implement the following concepts- Streams and File operations; Packages in JAVA; Exception handling mechanism; Applets and applications; Multi-threading in JAVA; Fundamental applications using swing.
GI 311 Principles of Physical Oceanography

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam Hrs</th>
<th>Univ. Exam Marks</th>
<th>Sessnl. Marks</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>-</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>4</td>
</tr>
</tbody>
</table>

Unit I

Unit II

Unit III
Ocean Tides: Tide Producing Forces, Tide Characteristics, Tidal Theories, Harmonic Analysis and Prediction of Tides, Tidal Ranges and Tidal Periods, Tidal Bore

Unit IV

Unit V

Text Books:
GI 312 Digital Image Processing – 1

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam Hrs.</th>
<th>Univ. Exam Marks</th>
<th>Sessnl. Marks</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>-</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>4</td>
</tr>
</tbody>
</table>

Unit -1

Unit -2

Initial Statistics Extraction – Univariate and Multivariate Statistics, Histogram – Contrast modification of Image data, Histogram Equalization, Histogram matching, Density slicing

Unit -3

Image Pre-processing – Sources and Corrections of Radiometric distortions, Sources and Corrections of Geometric distortions, Image registration.

Unit -4

Interpretation of Digital Image Data – Approaches to Interpretation, Forms of Imagery for image interpretation, Computer processing for image interpretation, Quantitative analysis.

Unit -5

Textbooks

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam Hrs.</th>
<th>Sessnl. Marks</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>3</td>
<td>70</td>
<td>100</td>
<td>4</td>
</tr>
</tbody>
</table>

Chapter 1 - Databases and Database Users
Introduction, Characteristics of the Database Approach, Actors on the Scene, Workers behind the Scene, Advantages of Using the DBMS Approach, A Brief History of Database Applications, When Not to Use a DBMS.

Chapter 2 - Database System Concepts and Architecture
Data Models, Schemas, and Instances, Three-Schema Architecture and Data Independence, Database Languages and Interfaces, The Database System Environment, Centralized and Client/Server Architectures for DBMSs, Classification of Database Management Systems.

Chapter 3 - Data Modeling Using the Entity-Relationship (ER) Model
Using High-Level Conceptual Data Models for Database Design, An Example Database Application, Entity Types, Entity Sets, Attributes, and Keys, Relationship Types, Relationship Sets, Roles, and Structural Constraints, Weak Entity Types, Refining the ER Design for the COMPANY Database, ER Diagrams, Naming Conventions, and Design Issues, Relationship Types of Degree Higher Than Two.

Chapter 4 - The Relational Data Model and Relational Database Constraints
Relational Model Concepts, Relational Model Constraints and Relational Database Schemas, Update Operations, Transactions, and Dealing with Constraint Violations.

Chapter 5 - The Relational Algebra and Relational Calculus

Chapter 6 - Relational Database Design by ERand EER-to-Relational Mapping
Relational Database Design Using ER-to-Relational Mapping, Mapping EER Model, Constructs to Relations.

Chapter 7 - SQL-99: Schema Definition, Constraints, Queries, and Views
SQL Data Definition and Data Types, Specifying Constraints in SQL, Schema Change Statements in SQL, Basic Queries in SQL, More Complex SQL Queries, INSERT, DELETE, and UPDATE Statements in SQL, Specifying Constraints as Assertions and Triggers, Views (Virtual Tables) in SQL, Additional Features of SQL.
Chapter 8 - Introduction to SQL Programming Techniques
Database Programming: Issues and Techniques, Embedded SQL, Dynamic SQL, and SQLJ
Database Programming with Function Calls: SQL/CLI and JDBC, Database Stored Procedures and SQL/PSM

Chapter 9 - Functional Dependencies and Normalization for Relational Databases
Informal Design Guidelines for Relation Schemas, Functional Dependencies, Normal Forms Based on Primary Keys, General Definitions of Second and Third Normal Forms, Boyce-Codd Normal Form

Chapter 10 - Relational Database Design Algorithms and Further Dependencies
Properties of Relational Decompositions, Algorithms for Relational Database Schema Design, Multi-valued Dependencies and Fourth Normal Form, Join Dependencies and Fifth Normal Form, Inclusion Dependencies, Other Dependencies and Normal Forms

Chapter 11 Emerging Database Technologies and Applications
Mobile Databases, Multimedia Databases, Geographic Information Systems (GIS), Genome Data Management

Textbooks

GI 314 Operations Research

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam Hrs.</th>
<th>Univ. Exam Marks</th>
<th>Sessnl. Marks</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>4</td>
</tr>
</tbody>
</table>

Unit I
Overview of operations research: OR models, OR techniques
Linear Programming: introduction, graphical solution, graphical sensitivity analysis, standard form of linear programming problems, basic feasible solutions, unrestricted variables, simplex algorithms, artificial variables, big M and two phase method, degeneracy, alternative optima, unbounded solutions, infeasible solutions.

Unit II
Dual problems, relation between primal and dual problems, dual simplex method, Integer programming, branch and bound algorithms cutting plan algorithm

Unit III
Transportation model, starting solutions, northwest corner rule, lowest cost method, Vogels approximation method, transportation algorithms, assignment problem, Hungarian method

Unit IV
Network Models, Project scheduling - CPM and PERT - their algorithms

Unit V
Dynamic Programming: recursive nature of dynamic programming, forward and backward recursion
Game theory: two persons zero sum games, mixed strategy games and their algorithms

Text books
1) Introductions to operations Research by Hillier/Lieberman, Tata McGraw Hill
2) Operations Research by R.Panneerselvan, prentice Hall of India
RS 315 Remote Sensing - II

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total</th>
<th>Univ. Exam</th>
<th>Sessnl.</th>
<th>Total</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>-</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
</tbody>
</table>

Unit-I Sensors, Data reception, Data processing & Data generation
- Sensors and its specifications
 - Multispectral Scanner (MSS) used in Landsat series satellites
 - Return Beam Vidicon (RBV) used in Landsat series satellites
 - Thematic Mapper (TM) used in Landsat series satellites
 - High Resolution Visible (HRV) Imager used in SPOT Satellite
 - Linear Image Self Scanning (LISS) Camera used in IRS series
- Thermal Scanners
- Satellite Data Receiving and data generation
- Data processing & correction

Unit-II Radiometric and Geometric corrections
- Radiometric corrections Random noise correction
- Atmospheric correction, Geometric errors and corrections,
- Distortion evaluated from tracking data, distortion evaluated from ground control Image correction.
- Ground Investigation in support of Remote sensing
- Uses of ground data, calibration correction, Interpretation of properties, Training sets,
- Accuracy evaluation, test sites.

Unit-III Thermal Imaging
- Thermal Imaging: Introduction - IR region of the Electromagnetic spectrum,
- Atmospheic transmission, Kinetic and radiant temperature, Thermal properties of materials, Emissivity, Radiant temperature, Thermal conductivity, Thermal capacity, thermal inertia, Apparent thermal inertia, Thermal diffusivity
- IR - radiometers, Airborne and Satellite scanner system
- Characteristics of IR images, Scanner distortion, image irregularities, Film density and recorded Temperature ranges
- Effects of weather on images: Clouds, Surface winds, Penetration of smoke plumes;
- Interpretation of thermal imagery; Advantages of Thermal imagery

Unit IV Introduction to Microwave remote sensing
- Types of Microwave sensors, Real Aperture Radar (RAR), Synthetic Aperture Radar (SAR), Geometry of Radar Imagery, Microwave Radiometers, Microwave Scatterometer, Microwave Altimeter, Airborne and Space born Platforms and Sensors, SEASAT , SIR-A, SIR-B , JERS , ERS and EOS.
Unit - IV Radar data & Data Interpretation
Spatial Resolutions in Radar: Range resolution, Azimuth Resolution, Radar return and Image signature, System properties (Wavelength, Polarization and Incidence angle)
Terrain properties: Di-electric constant, Surface Roughness, Feature Orientation
Forms of Radar return: Spectral Reflection, Corner Reflection or Diffused scattering

Radar image characteristics, slant range distortion, Relief displacement, Lay-over, Foreshortening, Radar shadow, Parallax and Stereo capability, speckle. Interpretation of SLAR image, SAR Image, Atmospheric applications, Ocean and Land, SAR interferometry

Text Books
4. Remote Sensing in hydrology, Engman, E.T. Gurney, R.J.
5. Remote Sensing in water management in command areas, Govardhan
GI 316-1 Geoinformatics for Environmental Monitoring (Elective-I)

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam</th>
<th>Sessnl.</th>
<th>Total</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>-</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
</tbody>
</table>

Unit –I Water and the Environment

Unit –II Urban Environment

General consideration rural structure – Urban areas – Impact of industrial pollution – chemical effluents, land reclamation – disposal of solid waste – mining pollution

Unit- III Marine Environment

Unit –IV Air pollution and Global Climatology

Unit –V Case studies

River pollution – the case of Ganga River
Air Pollution in Delhi; Mathura Refinery and Taj Mahal; Marine pollution in Visakhapatnam; Urbanization and its impact on Visakhapatnam city environment

References

OR
GI 316-2 Geoinformatics for Earth Science Applications (Elective-I)

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Hrs</th>
<th>Univ. Exam</th>
<th>Sessnl. Marks</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>-</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
</tbody>
</table>

Unit – I: Remote sensing applications in lithological studies
Introduction; Scope for Geological applications in multispectral data, Thermal Data, Microwave data Mapping of Broad scale Lithological Units in General, Igneous, sedimentary and metamorphic rock, Identification of Mineral Assemblage, their physical properties mode of origin and mode of occurrence; Lithological mapping using aerial photos and satellite imagery, Digital analysis for lithological discrimination

Unit – II: Remote Sensing applications in structural analysis
Bedding and simple dipping strata, Folds, Faults, rift zones, Lineaments, Unconformity, Structural mapping – structural analysis through aerial- and satellite- data, digital techniques for structural analysis.

Unit- III: Remote sensing application in geomorphology
Nature and type of landforms like denudational, structural, fluvial, marine, Aeolian, glacial and volcanic

Unit – IV: Remote sensing application in geological investigations

Unit- V: Engineering and Sub-surface exploration & Disaster Assessment
Engineering geological Investigations: river valley projects, dams and reservoirs, route location (high ways and Rail ways) canal and pipeline alignments; neotectonism, seismic hazard and damage assessment, local ground condition, disaster assessment, volcanic and geothermal Energy applications, volcanic mapping and monitoring, identification of coal fires; environmental geology
Resistivity, aeromagnetic and electromagnetic survey for subsurface explorations

Textbooks
Ravi P.Gupta, Remote sensing Geology-Springer Publisher,A1 Books Co.in.
GI 317 Digital Image Processing-I Practical

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam Hrs.</th>
<th>Mark</th>
<th>Sessnl. Marks</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>50</td>
<td>50</td>
<td>100</td>
<td>2</td>
</tr>
</tbody>
</table>

Study of Digital Data Products – Characteristics of digital Images, Importing different satellite data products, converting hardcopy images to digital format
Radiometric Enhancements – LUT Stretch, Histogram equalization, Histogram matching, Image filtering
Geometric Enhancements – Geometric correction, Mosaic of images, Resolution merge
Functions & Operations on digital imagery

GI 318 Database Management Systems Practical

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam Hrs.</th>
<th>Mark</th>
<th>Sessnl. Marks</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>50</td>
<td>50</td>
<td>100</td>
<td>2</td>
</tr>
</tbody>
</table>

Study features of a commercial RDBMS package such as ORACLE, MS Access, MYSQL & Structured Query Languages (SQL) used with the RDBMS. (Select two of RDMSS)
Laboratory exercises should include defining schemes for applications, creation of a database, writing SQL Queries, to retrieve information from the database, use of host Languages, interface with the embedded SQL, use of forms& report writing packages available with the chosen RDBMS product.

Some sample examples, which may be programmed, are given below:
Accounting package for a shop,
Database manager for a magazine agency or a newspaper agency,
Ticket booking for performances,
Preparing greeting cards & birthday cards,
Personal accounts- insurance, loans, mortgage payments, etc,
Doctor’s dairy & billing system,
Personal bank account
Class marks management, hostel accounting,
Video tape library,
History of cricket scores,
Cable TV transmission program manager,
Personal library.
GI 319 – Soft Skills

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total</th>
<th>Univ. Exam</th>
<th>Sessnl.</th>
<th>Total</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
</tbody>
</table>

SYLLABUS IN SOFT SKILLS

1. **Basic Skills**
 - Listening
 - Speaking
 - Reading
 - Writing

2. **Non-Verbal**
 - Grooming (Personal Appearance)
 - Using Space
 - Body Language
 - Paralanguage

3. **Basic Etiquette**
 - Introducing
 - Conversation – Small Talk
 - Table Manners
 - Telephone/ Cell phone manners

4. **Goal Setting**
 - Immediate, Short Term, Long term
 - Smart Goals
 - Strategies to achieve goals

5. **Time-Management**
 - Types of time
 - Identifying time wasters
 - Time Management skills

6. **Using Telephone**
 - Making and receiving calls
 - Handling wrong numbers and unnecessary calls
 - Intonation
 - Enunciation
7. Leadership and Team Management
 • Qualities of good leader
 • Leadership styles
 • Decision Making
 • Problem Solving
 • Negotiation Skills

8. Assertiveness
 • Assertiveness and aggressiveness
 • Disagreement
 • Openness and Expressiveness
 • Self Concept
 • Positive Thinking

9. Group Discussion
 • Purpose (Intellectual ability, Creativity, Approach to a problem, Solving, Tolerance, Qualities of a leader)
 • Group Behaviour
 • Analysing Performance

10. Job Interview
 • Identifying Job Openings.
 • Preparing a Resume (Basic, Functional, Specific)
 • Covering Letter (Solicited/Unsolicited)
 • Interview (Opening, Body – Answer Q, Close – Ask Q)
 • Types of questions
 • Handling difficult Questions

REFERENCE BOOKS
Free Elective-1: FE 01 (Geo-Engg) Spatial Information Technology

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam Hrs.</th>
<th>Marks</th>
<th>Sessnl. Marks</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>4</td>
</tr>
</tbody>
</table>

Unit - I
Scope: Satellite and computer technologies and information explosion; Spatial information: Visualization, measurement and analysis of the earth surface features/phenomena; Maps, aerial photographs, satellite remote sensing, GPS and GIS; Earth Coordinate System; Maps: types of maps; map scale and geographic details; Lettering and symbols on maps; Map projections; Topographic maps: India and adjacent countries series of maps; contours, map interpretation for physical and cultural features

Unit - II
Aerial photographs: types of photographs; Fundamentals of photogrammetry and photo interpretation; Scale on aerial photographs; Geometry of vertical aerial photographs; Stereoscopy; End lap; Side lap; Vertical exaggeration; Parallax and Parallax Measurements; Relief displacement on vertical aerial photographs; orthophotography.

Unit - III
Satellite Remote Sensing: digital images; Electromagnetic spectrum and earth surface interactions; Orbiting satellites, sensors, imaging techniques and data products; Computer processing of digital images: image registration, enhancement and classification techniques; image interpretation and applications; Principles of digital photogrammetry.

Unit - IV
Global Positioning Systems (GPS): Navigation; GPS elements – space segment, user segment and control segment; Accuracy issues; determining orthometric heights. GPS receivers: Multi-channel, sequential and multiplexing receivers; Differential GPS; GPS applications in defense, surveying, mapping, and in everyday life

Unit – V
Geographic Information Systems (GIS): Fundamental concepts of GIS; Spatial data: types of spatial data; sources of spatial data; input techniques; data organization and storage; manipulation and analysis of spatial data in GIS. Applications of GIS;

Textbooks
2. Elements of Cartography, Robinson et al., Wiley 2004
Unit – I
Fundamentals of Web
Hyper Text Markup Language, Web designing through application tools (Microsoft FrontPage/Adobe Dream weaver), Cascading style sheets. Netscape and Internet Explorer extensions

Unit – II
Scripting Languages
CGI programming, Introduction to Scripting languages, (Java Script/ Vb Script / PHP / Python), Java Script: History, Features of JavaScript, Syntax and Symantics and use in Web pages
Exercises: Introduction to JavaScript; JavaScript: Arrays, loops, conditional statements and functions; Document Object Model (DOM); Capturing and handling events in JavaScript; Working with Windows and Frames

Unit – III
Web programming & Application Development
Exercises: Setting up Apache/IIS; Installing PHP; Installing MySQL; Installing and using PHPMyAdmin

Unit – IV
Server Side and Client side scripting
Introduction to Database connectivity, Open Database Connectivity Standard(ODBC), Data insertion, retrieval and selection criteria using database connectivity tools (Database and scripting languages),
Exercises:
A. Introduction to PHP; Working with Data Types and Operators; Building Functions and Control Structures; Manipulating Strings; Working with Files and Directories; Manipulating Arrays
B. Introduction to SQL; Working with Databases and MySQL; Validating form data (server side); Error Handing and Debugging

Unit – V
Internet GIS: Introduction to Internet/Web GIS; Spatial (Raster and Vector) data dissemination using Web GIS; Distributed GIS development and Services;
Exercises: Configuring and installing map server (Proprietary & Open Source); Creating a WebGIS application: publishing raster and Vector Data; Creation of OGC Services (WMS/WFS); Consuming/Creating OGC Services; Introduction to open layers

Textbooks/References:
2. Discovering the Internet: Complete Concepts and Techniques by Gary B. Shelly, Thomas J. Cashman, H. Albert Napier, Philip J. Judd
5. Professional PHP5 Programmer to Programmer) by Edward Lecky-Thompson
6. PHP5 and My SQL Bible by Tim Converse and Joyce Park with Clark Morgan
7. Database connectivity, Bernard Van Haecke
8. Internet GIS: Distributed geographic information services, ZR Peng and MH Tsou.
GI 322 Geographic Information Systems –I

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam</th>
<th>Sessnl.</th>
<th>Total</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>-</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
</tbody>
</table>

Unit – I

Unit – II
Data Files and Data bases- Data Types – Non-Spatial Data – Nominal, Ordinal, interval, ratio-Spatial Data – Points, Lines and Polygons / Area – File Types – Simple lists, Ordered Sequential Files – Indexed Files – Data Base – Functions, Data base structures – Hierarchical, Network, Relational.

Unit – III

Unit – IV

Unit – V
Continuous Surface Representation - Digital Elevation Models – Elevation data capture, Interpolation, DEM representation – Altitude matrix, TIN structure – DEM interpretation, Scale, Visualisation, Applications.

Text Books
GI 323 Elements of Cartography

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam Hrs</th>
<th>Marks</th>
<th>Sessn. Marks</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>-</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>4</td>
</tr>
</tbody>
</table>

Unit I
Maps: basic characteristics of maps; types of maps – classified by scale, function and subject matter. Map scale; representation of scale on maps; determining the scale of a map; Geographical coordinates - latitudes and longitudes; Properties of the graticule

Unit II
Map projections - conformal, equivalent and azimuthal projections; perspective projections, non-perspective projections, conventional projections
Conical projections; Cylindrical Projections; Zenithal projections; Space map projection

Unit III
Sources of Map data: Ground surveys: Principles of surveying; Measurement technology – traditional and automated survey systems; Remote sensing: aerial photography and satellite-based imaging; Census: population enumerations, geocoding – entity focus and aggregation; Spatial sampling: sample size, sampling units, dispersion of sampling units, sample distribution

Unit IV
Cartographic design: Graphic elements of map design; Contrast, Figure-ground, colour and balance
Typography and lettering - type form, type size and type colour; Methods of lettering - cerographic technique, free-hand lettering, stick-up lettering, mechanical lettering; Guidelines for positioning of letters; lettering as a graphic symbol

Unit V
Relief representation on maps: Pictorial methods – hachuring, hill-shading; Quantitative methods – spot heights, Bench Marks, contours
Slope representation: Methods of expression of slopes – degrees, gradient percentage; finding slopes from contours – Wentworth’s method and Smith’s method
Block diagrams
Digital Cartography

Textbooks
‘Elements of Cartography’ by A.H. Robinson and K.D. Sale, John Wiley & Sons
‘Elements of Practical Geography’ by R.L. Singh, Kalyani Publishers, New Delhi
GI 324 Geodesy and GPS

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam</th>
<th>Sessnl.</th>
<th>Total</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>-</td>
<td>6</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
</tbody>
</table>

Unit I
Basic principles of Geodesy; History of Geodesy; Spherical Earth; Ellipsoidal Earth; Geoidal Earth; Geodetic Survey Systems; Horizontal Positioning – Determination of Astronomic position, Triangulation, Trilateration; Vertical Positioning.

Unit II
Fundamentals of Reference Systems and Frames: Geodetic and Cartesian coordinate system; principles of coordinate transformation; Datums: Horizontal and vertical datums – national, regional and local datums; Major datums and Indian datum; World Geodetic System (WGS) WGS84; tidal datums

Unit III
Satellite Geodesy: definition; observational systems: Historical systems; Doppler; laser; radar altimetry

Unit IV
Global Positioning System (GPS): Definition; GPS elements – space segment, user segment and control segment; Observation principles; phase measurement techniques; determining orthometric heights; GPS Error Sources and Error Handling Procedures: Atmospheric effects, clock and orbital errors, multipath, anti-spoofing and selective availability, etc; interference and jamming. Accuracy issues, GPS satellite navigation message; GPS time, fundamental and derived frequencies.

Unit V
GPS receivers: Multi-channel, sequential and multiplexing receivers; GPS applications: Defense, civilian, Navigational and Geodetic applications; GPS-GIS integration; GPS applications in surveying, mapping, GIS and land navigation and precision farming; integration with other sensors: GPS in intelligent transportation and fleet management

Textbook
1. Physical Geodesy by Weikko A. Heiskanen and Helmet Moritz, Freeman and Company
7. GPS for Geodesy, A. Kleusberg and P. Teunisse (Eds), Springer-Verlag, 1996
GI 325 Digital Image Processing – II

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam Hrs.</th>
<th>Univ. Exam Marks</th>
<th>Sessnl. Marks</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>-</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>4</td>
</tr>
</tbody>
</table>

Unit -1

Unit -2

Unit -3
Classification – Supervised Classification – Maximum Likelihood, Minimum Distance, Parallelepiped, Other Supervised Classifications, Context Classifications, Non-parametric Classification – Linear Discrimination, Support Vector Classifier, Neural Network Approach, Unsupervised Classification – Delineation of Spectral Classes, Similarity metrics and clustering criteria, Iterative Optimization, Single pass Clustering Technique, Agglomerative Hierarchical Clustering, Clustering by Histogram Peak Selection, Classification Accuracy Assessment.

Unit -4
Interpretation of Hyper-spectral Image Data – Data Characteristics, Challenges to Data Interpretation, Data Calibration Techniques, Interpretation using Spectral Information, Hyperspectral Interpretation by Statistical Methods, Feature Reduction, Regularized Covariance Estimators.

Unit -5

Textbooks
GI 326-1 Geoinformatics for Ocean Resources Evaluation (Elective-II)

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam</th>
<th>Sessnl. Marks</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>-</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
</tbody>
</table>

Unit – I:

Unit – II

Unit – III

Sea-bed Surveys: Echo-sounding, sub-bottom profiling, swath-bathymetry.

Unit – IV

Methodology to monitor coastal ecosystem and Role of RS. Sea level change and its impact on Coastal/Estuary/Lagoonal ecosystem.

Unit – V

Marine GIS (MGIS) Ocean State Forecasting: Materials and methods for Ocean State Forecasting.

Textbooks
GI 326-2 Mathematical Morphology in Image Processing

<table>
<thead>
<tr>
<th></th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam</th>
<th>Sessnl. Sessnl.</th>
<th>Total</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>1</td>
<td>-</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>100</td>
</tr>
</tbody>
</table>

Unit - I
Overview of mathematical morphology-Basic set theory and logical operations-Euclidean space-continuous and discrete space-Image Representation-Image and grey level images-shapes-quantisation-shape-binary images- translation-rotation-scaling

Unit - II
Mathematical Morphology-Binary Mathematical Morphology-Erosion, Dilation, Opening, Closing Hit or Miss Transformation-Basic morphological algorithms-boundary extraction-region filling-Convex Hull-Thinning-Thickening

Unit - III

Unit - IV
Binary and Grey level image segmentation-Skeletization by Zone of Influence Technique-Watershed segmentation technique- Segmentation of SPOT, RADARSAT, ERS SAR, and IRS data-Morphology based noise removal techniques for Microwave remote sensing data analysis-Granulometries for feature analysis

Unit - V
Exact dilations-Distance-transformations-Exact distance transforms through exact dilations-Vornoi Diagrams (Graph Theory)-Scale space skeletonization-Multi-scale morphological transformations-Shape Morphology for DEM analysis and terrain characterization

Textbooks

Suggested Reading
Gonzalez, Digital Image Processing

GI 327 Geographic Information Systems -I Practical

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam Hrs.</th>
<th>Sessnl. Marks</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
</tbody>
</table>

Classification of spatial data, layer and symbol concept using a GIS software, GIS project overview.
Exercise on digitizing entities like point, line and polygon data
Editing and adding labels, cleaning and generating coverage topology
Exercise on scanner and different scanner format and raster to vector conversion
Attribute data addition and query generation
Simple overlay analysis, map and report output

GI 328 Digital Image Processing– II Practical

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam Hrs.</th>
<th>Sessnl. Marks</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
</tbody>
</table>

Multi Spectral Transformation of Image Data – Principle Component Analysis, Tasseled CAP, Calculation of indices
Fourier Transformation of Image Data – Fourier Transformation, Inverse Fourier Transformation, Discrete Fourier Transformation, Convolution
Classification - Supervised Classification, Unsupervised Classification.
Topographic Analysis – Creation of Slope map, Aspect map, Contour map, Viewshed analysis
Change Detection Analysis.

GI 329 – Industrial Training

(Summer Vacation)

Students will have to visit laboratories of government organizations like NRSA, ISRO, RRSSCs, etc., and reputed private institutes engaged in Geoinformatics-related projects for training and interaction during summer vacation.
GI 411 Digital Photogrammetry

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam Hrs.</th>
<th>Sessnl. Marks</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>-</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
</tbody>
</table>

Unit -1

Unit – 2

Unit – 3

Unit – 4
DEM Quality assessment- Vertical & Horizontal Accuracy, Post Spacing, Vertical & Horizontal Datum, Projection and Coordinate system, DEM Editing, TIN/DEM Accuracy testing, Quality Control, TIN interpolation
DEM User Requirements – Accuracy and Cost Considerations – Technology-based cost comparisons, Area-based cost comparisons, and Accuracy-based cost comparisons.

Unit – 5

Text Books
Paul R Wolf and Bon A. Dewitt, Elements of Photogrammetry (3ed), Mc Graw Hill
GI 412 Geological Engineering

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total</th>
<th>Univ. Exam</th>
<th>Sessnl.</th>
<th>Total</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pds</td>
<td>Hrs. Marks</td>
<td>Marks</td>
<td>Marks</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
</tbody>
</table>

Unit-I
Introduction of palaeontology, Morphology, classification and geological significance of important invertebrates, vertebrates, microfossils and palaeo flora; Coal and petroleum geology; marine geology and ocean resources;

Unit II
Magmatic differentiation; phase diagrams and trace elements as monitors of magma evolutionary processes; mantle melting models and derivation and primary magmas. Metamorphism; controlling factors, metamorphic facies, grade and basic types; metamorphism of pelitic, mafic and impure carbonate rocks; role of fluids in metamorphism; metamorphic P-T-t paths and their tectonic significance; structure and petrology of sedimentary rocks; sedimentary processes and environments, sedimentary facies. Engineering properties of Rocks: compressive strength triaxial tensile strength, shear strength, modulus of elasticity, poisons ratio. Engineering classification of rock masses.

Unit III
Stress, strain and material response; brittle and ductile deformation; primary and secondary structures; geometry and genesis of folds, faults, joints, unconformities; cleavage, schistosity and lineation; methods of projection, tectonites and their significance; shear zone; superposed folding; basement cover relationship.

Unit IV
Ore mineralogy and optical properties of ore minerals; ore forming processes vis-à-vis ore-rock association (Magmatic, hydrothermal, sedimentary and metamorphogenic ores); ores and metamorphism; fluid inclusions in ore prospecting and exploration of economic minerals; sampling, ore reserve estimation, geostatistics, mining methods. ore dressing and mineral economics.

Unit V
Cosmic abundance; meteorites; geochemical evolution of the earth; geochemical cycles, carbon, phosphorous, nitrogen, sulphur, distribution of major, minor and trace elements; elements of geochemical thermodynamics, isotope geochemistry; geochemistry of waters including solution equilibria and water rock interaction.

TextBooks
2. The Principles of Petrology, G.W. Tyrrell, B.L. Publ., 1994
5. Engineering Geology, P.Singh, S.K. Kataria & Sons

Reference
1. Igneous and Metamorphic Petrology, F.J. Turner and J. Verhoogen, McGraw Hill
2. Sedimentary rocks, F.J. Pettijohn, CBS Publ.,
3. Ore Microscopy, E.N. Cameron, John Wiley
GI 413 Computer Graphics

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam Hrs.</th>
<th>Sessional Marks</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>4</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
</tbody>
</table>

Unit I

Overview of Graphics Systems
Random-scan and raster scan monitors, Color CRT, Plasma panel displays, LCD Panels, Plotters, Film recorders, Graphics workstations, Display processors, Graphics software, Input/Output Devices, Touch panels, light pens, graphics tables.

Output primitives
Points and lines, DDA, Bresenham’s Line algorithm, parallel line algorithm, line function, circle generating algorithm, filled area primitives and pixel addressing.

Unit II

Two-Dimensional Geometric Transformations and viewing
Use of homogeneous coordinate systems, Translation, scaling, rotation, Mirror reflection, Rotation about an arbitrary point, Zooming and panning, Rubber band methods, dragging, Parametric representation of a line segment. Point-line and polygon clipping

Unit III

Three-Dimensional Concepts and object representations
polygon surfaces, Curved lines and surfaces, Quadric surfaces, Blobby objects, Spline representations, Cubic Spline Interpolation methods, Bezier curves and surfaces.

Unit IV

Three-Dimensional Geometric and Modeling Transformations
translation, Rotation, Scaling, Other Transformations, Composite transformations, Three dimensional transformation functions, modeling and coordinate transformations.

Three-Dimensional Viewing
Viewing coordinates, projections, Clipping, Three dimensional viewing functions.

Visible-Surface Detection Methods
Back face detection, Depth buffer method, Depth sorting method, Area subdivision method, Visibility detection functions.

Unit V

Illumination Models and Surface-Rendering Methods
Halftone Patterns and dithering techniques, Polygon rendering methods, Environment mapping

Color Models and Color Applications
Properties of light, Intuitive color concepts, RGB, YIQ, CMY, HSV color models.

Donald Hearn & m.Pauline baker
GI 414 – Urban Planning and Information Systems

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam</th>
<th>Sessnl. Marks</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>-</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>100</td>
<td>4</td>
</tr>
</tbody>
</table>

Unit – I Introduction

Planning: background and principles; Need for planning; Urbanisation and its impact, Distribution of land use/land cover; Town planning in ancient India and new towns of India; Requirements and possible types of development of towns; Geoinformatics application in Urban Planning

Unit II Formulation of Plans

Objectives and contents; Regional plan; Perspective plan; Master plan; Development plan; Project (scheme) plan; Delineation of planning area; Trend analysis; Land suitability analysis; Land use planning; Zoning and principles of zoning; Building Bye-laws and its principles; Requirement of urban & regional planners; Remote sensing for different levels of development planning

Unit – III Housing

Importance of housing; urban housing demand and production; Slums and squatters; Housing problem in India; National Housing policy; Site analysis - Layout design; Housing projects / Slum housing; Urban renewal projects; Urban infrastructure planning

Unit – IV Transportation planning

Classification of urban roads; Traffic surveys: speed, time, delay surveys; Use of speed, journey time and delay studies; Traffic volume; Origin Destination surveys; Parking surveys; Utility of remote sensing in traffic and transportation studies

Unit – V Urban Information System

Information system: Land; Housing; Transportation; Infrastructure; Trends in mapping using remote sensing, GIS and GPS; Database creation for Infrastructure development Decision support system for urban and regional management

Textbooks

- Rangwala, Town Planning, Charotar Publishing House, Anand, India
GI 415 Principles of Economics and Management

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>D</th>
<th>Total Periods/week</th>
<th>Univ. Exam</th>
<th>Marks</th>
<th>Sessional Marks</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>3 hrs</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

1. **Introduction to Managerial Economics** – Wealth, Welfare and Scarce; Definitions of Economics; Micro and Macro Economics; Demand - Law of Demand, Elasticity of Demand, types of elasticity and factors determining price elasticity of Demand; Utility - Law of Diminishing Marginal Utility and limitations.

2. **Conditions of Direct Market Structures** – Perfect Competition, Imperfect Competition, Monopolistic Competition, Monopoly, Oligopoly and Duopoly

3. **Forms of Business Organisations** – Sole proprietorship, Partnership, Joint Stock Company – Private limited and public limited companies, public enterprises and their types

4. **Introduction to Management**: Functions of management - Taylor’s scientific management; Henry Fayol’s principles of management; **Human Resource Management** – basic functions of HR manager; manpower planning, recruitment, selection, training, development, placement, compensation and performance appraisal (in brief)

5. **Production management** – Production planning and control, plant location, break-even analysis, assumptions and applications

7. **Market management** – functions of marketing and distribution channels

8. **Entrepreneurship** – Entrepreneurial functions, entrepreneurial development: objectives, training, benefits; phases of installing a project

Textbooks

Reference Books

Elective-III GI 416-1 Geoinformatics for Watershed Management

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam Hrs</th>
<th>Marks</th>
<th>Sessnl. Marks</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>-</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>4</td>
</tr>
</tbody>
</table>

Unit-1 (Watershed Concept)

a) Issues in watershed management - land degradation, agricultural productivity, reservoirs sedimentation, depletion of bioresources, floods and droughts. Principles and approaches - principles of watershed management, different approaches in watershed management; Problem oriented approach, three dimensional approaches, integrated approach, steps in watershed management.

b) Watershed characteristics - size, shape physiography, slope, climate, drainage, land use, vegetation, geology, soils, hydrology, hydrogeology, socio-economics. Linear aspects of channel systems - Aerial aspects of drainage basins.

Unit-2 (Land Management)

b) Land capability classification, land degradation and problem soils. Reclamation of saline soils, alkaline soils, saline soils, acidic soils, sulphide soils; sediment yield modeling and watershed prioritization. The universal soil loss equation, sediment yield index method, statistical regression model, the European soil erosion model; Site selection from conservation measures.

Unit-3 (Water Management)

a) Surface water - Study of rainfall, estimation of run-off at micro catchments, stream gauging; Rainwater harvesting catchment, harvesting, harvesting structures, Ground water - exploration of canal command areas, potential areas; integrated water resources management, conjunctive use.

b) Dry land Agriculture - Runoff agriculture, micro catchment forming, irrigation with saline water, reusing water, conserving water, sprinkler irrigation, drip irrigation, pot irrigation, other systems, reducing crop land percolation losses, reducing transpiration losses, selection of water use efficiency crops.

Unit-4 (Integrated Management)

a) Agriculture - Crop husbandry, soil enrichment, inter, mixed and strip cropping, copping pattern; sustainable agriculture, Hybrid and improved seeds; Biomass management, crop rotation, legumes, organic fertilization, spider farming, pastures and silvipastures; horticulture; tree culture; form forestry; bund utilizing, boundary plantation; social forestry; Energy - Renewable resource water power, solar energy wind power; biomass, fire food synthetic fuels, burning of municipal / garbage, ocean tides and waves.

b) Appropriate Technology - Farm Equipment; Contour Methods; Check Dams, Water catchment and Harvesting, Kunds, Depression Harvesting, Harvesting below ground level, Harvesting below stream bed level, Ground water harvesting; low cost technology, Water Conservation, Utilization of Wasted Natural Resources, Novelties; Rural Technological
Delivery Systems, Cultivating Wasted Lands, Tree Culture, Farm Forestry, Silvipastures, horticulture, Social forestry, afforestation, wonder ways.

Unit-5 (Monitoring and Evaluation)

a) People's Part - Awareness, participation, Response; State and integrated approach, Appreciation of the concept, training, transfer of technology, Resource and Development, Agro-industrial infrastructure; Sustainable society, livestock, small animal farming, pisciculture, sericulture, Health and hygiene education, transport, cues.

Text Books and References

Elective-III GI 416-2 Geoinformatics for Soil and Agriculture Surveys

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam Hrs.</th>
<th>Marks</th>
<th>Sessnl. Marks</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>-</td>
<td></td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>4</td>
</tr>
</tbody>
</table>

Unit I. Crop Inventory And Agricultural Water Management
Land Use / Land Cover: Information needs for Crop Inventory and agricultural water management, Digital and Visual techniques of land use mapping, Digital land use change detection; accuracy assessment
Crop Inventory: Importance of Remote Sensing in agriculture, Spectral characteristics of crops (Optical, Thermal & Microwave), Vegetative Indices, Principles of crop discrimination and acreage estimation, Principles and Approaches of Crop Yield Modeling using Remote Sensing, Crop condition, Stress assessment using temporal data. Canopy parameters retrieval (LAI, Biomass, Phenology etc.)
Agricultural Water Management: Remote sensing techniques for irrigated/un-irrigated crop inventory, irrigation water requirement, irrigation scheduling using remote sensing based crop water stress indices, ET estimation using remote sensing techniques, importance and assessment of soil moisture using remote sensing techniques (Optical, Thermal and Microwave), Definition and types of drought, Conventional and remote sensing based methods of agricultural drought assessment, (NADAM Project (National Agricultural Drought Assessment and Monitoring))

Unit II. Soil Survey, Mapping & Land Evaluation (SMLE)
Soil Profile Properties: Definition of soils, pedogenesis, Morphological characteristics of soil profile, genetic horizons and their nomenclature.

Unit III. Crop Resource Survey (CR)
Satellite Agro-meteorology: Satellite sensors & specifications for agro-meteorological applications, agro-meteorological parameters retrieval ABHRR applications in agro-meteorology GIS based land surface flux modeling
Advances in Crop resource Survey: Hyperspectral Imaging for Crop growth monitoring Precision agriculture, Canopy reflectance modeling, radiation interaction with plant canopies, various radiant transfer models, sun and sensors geometry effects on reflectance.

Unit IV. Soil Conservation (SC)
Genesis & Mapping of degraded lands and their potential: Formation and agents, site characteristics of degraded lands, GIS application for assessment of potentiality and productivity,
Genesis of shifting cultivation, salt – affected soils, wet lands, ravenous and gullied lands, desertic lands. Mapping using aerospace data. Comparison of empirical and process based models for soil loss estimation

Study of soil maps, USDA Soil Classification System, Interpretation of soil map for land capability, hydrological soil groups and soil suitability analysis (FAO Framework) for soil conservation planning.

Unit V. Soil Survey (SS)

Soil Classification: Soil forming factors, process: podzolization, laterization, salinization, gleization. Genesis of soil of different orders, epipedons, sub-surface diagnostic horizons, soil temperature and moisture regimes

Categories of USDA soil classification system: orders, sub-orders, great groups, sub-groups, family and series. Examples of soil classification

Soil Survey Applications: Arable farming, plantation, forestry, engineering, planning & development, irrigation.

Textbooks

Remote sensing Applications in agriculture by Eston & Clarke.

GI 417 Digital Photogrammetry Practical

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam Hrs.</th>
<th>Univ. Exam Marks</th>
<th>Sessnl. Marks</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>50</td>
<td></td>
<td>50</td>
<td>100</td>
</tr>
</tbody>
</table>

Creation of Non-oriented Digital Stereo Models
Creation of Oriented Digital Stereo Models
Accuracy of Digital Stereo Models
Measurements of 3 Dimensional information
Collecting & Editing 3D GIS data
Aerial Triangulation
Triangulation with Satellite Imagery
Orthorectification
Automatic Digital Terrain Model Extraction

GI 418 Urban Planning and Information Systems Practical

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam Hrs.</th>
<th>Univ. Exam Marks</th>
<th>Sessnl. Marks</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>50</td>
<td></td>
<td>50</td>
<td>100</td>
</tr>
</tbody>
</table>

Identification of urban objects on aerial photographs/satellite imagery of various scales
Urban land use/ land cover classification & interpretation on aerial photographs/satellite imagery
 - Visual interpretation
 - Digital classification
Urban facility mapping through GPS and analysis
Urban environmental analysis
Database creation for urban area analysis – a case study

GI 419 Industrial Training & Seminar
GI 421 Geographic Information Systems –II

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam Hrs.</th>
<th>Univ. Exam Marks</th>
<th>Sessnl. Marks</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>-</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>4</td>
</tr>
</tbody>
</table>

Unit – I: Spatial Data Manipulation and Transformation

Unit – II: Spatial and Non-spatial Data Analysis – Raster and Vector

Display of raster data – Local operators – recoding, overlaying – Local Neighbourhood operators – Filtering, Slopes and Aspects – Extended Neighbourhood operators – Distance, Buffer zones, Visible area or Viewshed – Zonal operations – Zone identification, Zone area, Zone Perimeter, Distance from Zone boundary – Vector data – Polygon overlay, polygon statistics, Network Analysis – Non-spatial data analysis – Structured Query Language.

Unit – III: Spatial Modeling

Unit – IV: Data Quality and Error Data Propagation in GIS

Unit – V: Miscellaneous Topics

Multi Criteria Evaluation in GIS – Data capture using GPS for GIS FM studies – Object Oriented Database Models. Recent trends in GIS.

Text Books

GI 422 Data Mining and Neural Networks

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam Hrs</th>
<th>Marks</th>
<th>Sessnl. Marks</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>-</td>
<td>6</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>4</td>
</tr>
</tbody>
</table>

Part A: Data Mining

Unit I
Introduction to Data Mining: importance and motivation of data mining, relational databases, data warehouses and data mining, translational databases, advanced database systems and advanced database application, data mining functionalities, pattern classification of data mining systems, major issues in data mining.
Data mining primitives, definition of data mining tasks, data mining query language, designing of graphical user interface based on data mining query language and architecture of data mining systems

Unit II
Classification and Clustering, classification and prediction concepts and issues regarding classification and prediction, classification by decision tree introduction, Bayesian classification, classification by back propagation, classification based on concepts from Association rule mining, K-nearest neighborhood classifiers, case based reasoning, genetic algorithms, rough set approach, fuzzy set approaches and prediction.
Cluster analysis: introduction to cluster analysis, types of data in cluster analysis, categorization of major clustering methods.

Unit III
Data mining applications: GIS and Data Mining – geospatial data mining for market intelligence; data mining for automated GIS data collection

Part B: Neural Networks

Unit IV

Unit V
Neural networks applications: neural network-based land transformation models; ANN and GIS in natural resource applications

Textbooks:
1. Introduction to Data Mining by A. Addisan Weeley Publication
2. Neural Networks and Fuzzy systems by B. Kosko, Prentice_hall India

References
Geospatial Data Mining for Market Intelligence by Paul Duke (http://www.tdan.com/view-articles/4921)

Using GIS artificial Neural networks and remote sensing to model urban change in the Minneapolis-St Paul and Detroit Metropolitan areas, by B.C. Pijanowski and B.A. Shellito
(http://web.ics.purdue.edu/~bpjianow/ASPRS%202001%20pijan.pdf)

Integration of GIS and Artificial Neural Networks for Natural Resources Applications by Gregory L. Easson, and David J. Barr
(http://gis.esri.com/library/userconf/proc96/TO150/PAP126/P126.HTM)
Elective-IV GI 423-1 Geoinformatics for Coastal Zone Management

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total</th>
<th>Univ. Exam</th>
<th>Sessnl.</th>
<th>Total</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>-</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
</tbody>
</table>

Unit I
Coastal and littoral zones – definitions and scope of study
Shore zone processes – waves, tides and currents
Coastal landforms;
River deltas: types of deltas and their morphological variations
Human activities and their impact on the delta-fringe coast

Unit II
Coastal wetlands – Mangrove swamps, marshes, lagoons, tidal channels/creeks and their significance in coastal stability and economic importance
Continental margins – forms and processes; territorial waters and Exclusive Economic Zone
Sea level changes – factors involved; effects of sea level oscillations on coastal zones
Sea-level rise and coastal vulnerability; Role of geoinformatics in assessment of coastal vulnerability to sea-level rise

Unit III
Coastal Hazards:
Storm surges and Tsunamis: Origin, propagation and run-up;
Role of coastal topography, bathymetry and vegetation;
Coastal hazard preparedness – coastal protection, education and awareness of coastal communities; Role of geoinformatics in assessment of coastal vulnerability to tsunamis

Unit IV
Human activity and coastal environment – deforestation, agriculture/aquaculture, pollution and coastal structures, and their effect on coastal zones
Coastal vegetation; shelter belts; coastal aquifers; freshwater-seawater interface
Morphology of Indian coasts

Unit V
Coastal zone management – concepts, models and information systems
Coastal Regulations Zones (CRZ) and Coastal Management Zones (CMZ): Indian context
Application of remote sensing in coastal zone studies
Role of Geographic Information Systems in coastal zone studies

Text books
2. Deltas, Coleman, J.M., Continuing education Publication Co.Inc. 1976
5. Introduction to Marine Geology and Geomorphology, King, C.A.M., Edward Arnold, 1974

References:
1. The role of Physical Processes in Mangrove Environments by Y. Mazda, E.Wolanski and P.V. Ridd, Terrapub, Tokyo, 2007
Unit I. Forest Classifications
Natural vegetation of India and its classification: Concept of natural vegetation, forest / vegetation types of India and its classification.
Spectral properties of vegetation & other features: Spectral response from vegetation under different spectral regions, effects of phenological changes on spectral behaviour, spectral signatures etc.
Aerial photo interpretation for forestry and ecological information extraction: Qualitative characteristics for interpretation of forest types, specifications for aerial remote sensing data, forest mapping using aerial photographs.
Quantitative measurements from aerial photos: Measurements of crown diameter, crown counts and tree/stand height, volume/biomass and area estimation, data requirements, methods of data collection, processing, and complication techniques.

Unit – II Forest Mapping
Visual interpretation of Satellite imagery and Change Detection: Image elements for extraction of vegetation related information from space borne images, monitoring forest change and damage by visual interpretation.
Digital image processing for forest vegetation, mapping and change detection: Enhancements, spectral indices, data compressions techniques, Classification approach, Change detection techniques, Accuracy estimation criteria & methods.

Unit – III Microwave remote sensing and its applications in forestry
Concepts involved in interpretation of micro wave remote sensing data for forest and land use information extraction, merging multi spectral and microwave data, utility for volume/density classification.
Forest Canopy Density mapping: Mapping Canopy density of forest/vegetation types.
Forest disease detection & monitoring: Application of remote sensing data for disease detection & monitoring.

Unit IV. Forest Management (FM)
Forest fire assessment and risk zonation: Concepts and introduction about fire behaviour; Fire mapping possibilities using RS data; Identification of fire prone areas using RS and GIS based spatial modeling.
Forest resources information system: Concept of forest resources information system, compilation, integration and interpretation of information for forest management
Biodiversity conservation planning: Concept of biodiversity characterization at landscape level.

Unit V Forest ecology
Ecological principles and concepts: Ecological principles and concepts, Ecological approaches for evaluation of various ecosystems.
Structural analysis of vegetation: Spectral vegetation indices and enhancing; vegetation response in remote sensing data, Vegetation classification and mapping using RS data for ecological studies – terrestrial, wetland and Estuarine vegetation, Phytosociological analysis.
Functional analysis of vegetation and biomass estimation: Biological productivity components and their relationship with remote sensing data; Bio-productivity cycle; Terrestrial ecology; Biomass estimation.
Landscape ecology: Concepts of landscape ecology, parameters involved in landscape study, landscape analysis approaches etc.
Environmental impact assessment: Environmental policy and strategy; Environmental management system; Impact assessment; Vegetation monitoring and modeling landscape dynamics, Decision Support System.

REFERENCE

Vegetation Mapping by A. W. Kuchlar & I. S. Zonneveld.
Land Use and Forest Type Classification Proposed for Aerial Photo Interpretation by M. S. Tomar (1976).
GI 424 Geographic Information Systems - II Practical

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam</th>
<th>Sessnl. Marks</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>50</td>
<td>100</td>
<td>2</td>
</tr>
</tbody>
</table>

1. Design a project based on cadastral/line drawing / map of a town/region for GIS project; identification of project problem.
2. Data input (spatial and attribute) editing and creating topology
3. Performing Geographic Analysis for the designed project
4. Presenting the results (map/report) of the analysis
 Viva presentation

GI 425 Project Work

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam</th>
<th>Sessnl. Marks</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>9</td>
<td>3</td>
<td>150</td>
<td>200</td>
<td>8</td>
</tr>
</tbody>
</table>

Each student has to take up a project work on a chosen field of interest within the scope of the degree in consultation with the teacher-guide allotted to him/her and submit a dissertation at the end of the stipulated time period, and face a viva-voce before a committee appointed for the purpose.
Free Elective-2 FE 02 (Geo-Engg)
Geoinformatics for Resources Development and Disaster Management

<table>
<thead>
<tr>
<th>Unit I</th>
<th>Natural Resources Development: Introduction and Scope: role of geoinformatics technologies – aerial photographs; satellite remote sensing; GPS; and GIS in resource evaluation. Water resources – surface water and groundwater resources: mapping and monitoring of watersheds, tanks and reservoirs; hydrogeomorphic mapping and identification of groundwater potential zones. Ocean resources: estimation of sea-surface temperature; primary productivity and potential fishing zones.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit II</td>
<td>Soil and agricultural resources: Spectral behavior of soils; Mapping of soils using multispectral images; Evaluation of soil erosion prone zones through GIS; Remote sensing in Land use / land cover mapping; Crop area estimations; monitoring of crop vigour; Yield estimations. Forest resources: mapping of forest types; estimations of timber volume; monitoring of forest health – forest pests, forest fires, Trends in deforestation and afforestation.</td>
</tr>
<tr>
<td>Unit III</td>
<td>Remote sensing techniques for identification of rocks and minerals; mapping of geological structures; surface manifestation of minerals and their identification; spectral properties of minerals; role of thermal and hyperspectral remote sensing in mineral exploration. Case studies</td>
</tr>
<tr>
<td>Unit IV</td>
<td>Geoinformatics in Disaster Management: introduction and scope Coastal Hazards: Storm surges and Tsunamis: Origin, propagation and run-up; Role of coastal topography, bathymetry and vegetation; Coastal hazard preparedness – Role of geoinformatics in coastal hazard mapping, risk and vulnerability assessment and evacuation analysis; coastal protection, education and awareness of coastal communities.</td>
</tr>
<tr>
<td>Unit V</td>
<td>Geoinformatics applications in disaster mapping and mitigation; Risk zone mapping: earthquakes – identification of geological structures like faults; volcanic activity – thermal imaging for monitoring temperature changes; Geoinformatics analysis of potential zones for landslides; avalanches; and floods. Mapping of disaster affected areas for rescue and mitigation; damage assessment; GIS-based decision support systems for disaster management.</td>
</tr>
</tbody>
</table>

Books and References:
Geomatics solutions for Disaster Management, Li, Zlatanova and Fabbri (ed), Springer, 2007

Applications of Remote Sensing in Agriculture, M.D. Steven and J.A.Clark, Butterworths, 1990

Tsunamis- to survive from tsunami, Susumu Murata et al., 2009 World Scientific Books

Reference