ANDHRA UNIVERSITY
Department of Zoology
M.Sc. FISHERY SCIENCE (Self-Finance)
M. Sc. Fishery Science is introduced as a two year post-graduate course in the Department of Zoology. Keeping mainly in view of the large number of job opportunities in government and private sector undertakings in the field of Fisheries and Aquaculture, the course is designed that the student is benefited to take up a job in professional and industrial organizations as well as to teach in Degree and junior colleges where Zoology or Fisheries are offered.

1. Candidates for M.Sc. Fishery Science Degree examination shall be required: (a) To have passed the qualifying examination of this University as detailed in AUCET (Andhra University Common Entrance Test) regulations or an examination of any other University recognized by the Academic Council as equivalent thereto; and (b) To have undergone subsequently a further course of studies extending over a period of two academic years. As the case may be, in this University, each academic year consisting of two semesters ordinarily consecutive.

2. The course and scope of instruction shall be defined in the syllabus prescribed:

3. (a) The candidate shall be required to take at the end of each semester, an examination as detailed in the scheme of examination.
Each paper of the examination shall unless otherwise prescribed be of three hours duration and for a maximum of 100 marks (15 + 85). An external paper setter shall set the question paper. There shall be double valuation. Similarly, there shall be one semester-end examination of 2-3 hours duration in each practical course. Paper-setting and evaluation shall be done jointly by two examiners, one internal and one external. Evaluation of the performance of the candidates in respect of each paper shall be carried out only by the semester-end examination.

(b) A candidate appearing for the whole examination shall be declared to have passed the examination if he/she obtains not less than 50% of the total marks in all papers including practical and records put together. And, also not less than 40% in each paper/practical at the semester-end and 40% marks for a maximum of 100 marks for each paper. All other candidates shall be deemed to have failed in the examination. Candidates who have completed the first semester course and have earned the necessary attendance and progress certificate shall be permitted to continue the second semester course irrespective of whether they have appeared or not at the first semester examination. Such candidates may be permitted to appear for the examination of the earlier semester with the examination of the later semester simultaneously.

Candidates shall put in attendance at the college for not less than 75% of the total number of working days. Condonation of shortage of attendance may be granted on the recommendation of the Principal of the College concerned provided that no condonation shall be recommended in the case of candidates who have not put in attendance at the college for at least 50% of the total number of working days. If a candidate represents the University officially at
games, sports or other officially organized extra curricular activities, it will be deemed that he/she has attended the college on the days he/she is absent for the purpose.

4. The names of the successful candidates at the examination shall be arranged in order in which they are registered for the examination as follows. On the basis of the total marks obtained by the each candidate at the I-IV Semester-end examination put together.

I Class with Distinction : Those who obtain 70% and above
I Class : Those who obtain 60% and above but less than 70%
II Class : Those who obtain 50% and above but less than 60%

Only those candidates who appear and pass examination in all the papers of the four semesters at first appearance are eligible to be placed in the first class with distinction. However, no candidate who has not passed all the papers relating to any semester at the first appearance shall be eligible for any medals, or prizes by the University and to receive certificates of rank, obtained by them in the examination.

Marks Schedule for Each Semester

Semester Duration : 16 weeks (Excluding holidays and time for Semester-end examination)

Theory : Number of periods of theory per paper : 4 – 5 periods per week. Each period of 50 minutes duration.

Practical : Students will be distributed into 4 – 5 batches per practical. Each practical class shall be of 3 periods (3 x 50 minutes) duration/batch.
DEPARTMENT OF ZOOLOGY : ANDHRA UNIVERSITY
M.Sc. FISHERY SCIENCE (SELF-FINANCE)
SCHEME OF EXAMINATION

<table>
<thead>
<tr>
<th>Semester/Code No. of paper</th>
<th>Title of the Paper</th>
<th>Max. Marks</th>
<th>Sem end</th>
<th>Mid Sem.</th>
<th>No. of hours/Week</th>
</tr>
</thead>
<tbody>
<tr>
<td>I Semester :</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>THEORY :</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FS 01</td>
<td>Limnology</td>
<td>100</td>
<td>85</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td>FS 02</td>
<td>Estuarine and Marine Biology</td>
<td>100</td>
<td>85</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td>FS 03</td>
<td>Taxonomy & Functional Anatomy of Shellfish & Finfish</td>
<td>100</td>
<td>85</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td>FS 04</td>
<td>Biosystematics and Taxonomy</td>
<td>100</td>
<td>85</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td>PRACTICALS :</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FS P 01</td>
<td>Practical-1 : Limnology</td>
<td>50</td>
<td>--</td>
<td>--</td>
<td>3</td>
</tr>
<tr>
<td>FS P 02</td>
<td>Practical-2 : Estuarine and Marine Biology</td>
<td>50</td>
<td>--</td>
<td>--</td>
<td>3</td>
</tr>
<tr>
<td>FS P 03</td>
<td>Practical-3 : Taxonomy & Functional Anatomy of Shellfish & Finfish</td>
<td>50</td>
<td>--</td>
<td>--</td>
<td>3</td>
</tr>
<tr>
<td>FS P 04</td>
<td>Practical-4 : Biosystematics and Taxonomy</td>
<td>50</td>
<td>--</td>
<td>--</td>
<td>3</td>
</tr>
<tr>
<td>FS – SM</td>
<td>Seminar</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II Semester :</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>THEORY :</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FS 05</td>
<td>Ichthyology</td>
<td>100</td>
<td>85</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td>FS 06</td>
<td>Capture Fisheries</td>
<td>100</td>
<td>85</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td>FS 07</td>
<td>General & Applied Zoology</td>
<td>100</td>
<td>85</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td>FS 08</td>
<td>Biostatistics, Population Dynamics and Remote Sensing</td>
<td>100</td>
<td>85</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td>PRACTICALS :</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FS P 05</td>
<td>Practical–5 : Ichthyology</td>
<td>50</td>
<td>--</td>
<td>--</td>
<td>3</td>
</tr>
<tr>
<td>FS P 06</td>
<td>Practical–6: Capture Fisheries</td>
<td>50</td>
<td>--</td>
<td>--</td>
<td>3</td>
</tr>
<tr>
<td>FS P 07</td>
<td>Practical–7 : General & Applied Zoology</td>
<td>50</td>
<td>--</td>
<td>--</td>
<td>3</td>
</tr>
</tbody>
</table>
III Semester:

THEORY:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Theory Marks</th>
<th>Exam Marks</th>
<th>Practice Marks</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>FS 09</td>
<td>Construction and Management of Hatcheries and Fish Farms</td>
<td>100</td>
<td>85</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td>FS 10</td>
<td>Freshwater Aquaculture</td>
<td>100</td>
<td>85</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td>FS 11</td>
<td>Coastal Aquaculture</td>
<td>100</td>
<td>85</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td>FS 12</td>
<td>Finfish and Shellfish Pathology</td>
<td>100</td>
<td>85</td>
<td>15</td>
<td>4</td>
</tr>
</tbody>
</table>

PRACTICALS:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Practical Title</th>
<th>Theory Marks</th>
<th>Exam Marks</th>
<th>Practice Marks</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>FS P 09</td>
<td>Practical-09 : Construction and Management of Hatcheries and Fish Farms</td>
<td>50</td>
<td>--</td>
<td>--</td>
<td>3</td>
</tr>
<tr>
<td>FS P 10</td>
<td>Practical-10: Freshwater Aquaculture</td>
<td>50</td>
<td>--</td>
<td>--</td>
<td>3</td>
</tr>
<tr>
<td>FS P 11</td>
<td>Practical-11 : Coastal Aquaculture</td>
<td>50</td>
<td>--</td>
<td>--</td>
<td>3</td>
</tr>
<tr>
<td>FS P 12</td>
<td>Practical-12 : Finfish and Shellfish Pathology</td>
<td>50</td>
<td>--</td>
<td>--</td>
<td>3</td>
</tr>
<tr>
<td>FS - SM</td>
<td>Seminar</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IV Semester:

THEORY:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Theory Marks</th>
<th>Exam Marks</th>
<th>Practice Marks</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>FS 13</td>
<td>Fish Immunology</td>
<td>100</td>
<td>85</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td>FS 14</td>
<td>Fish Physiology and Biochemistry</td>
<td>100</td>
<td>85</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td>FS 15</td>
<td>Genetics, Molecular Biology and Biotechnology</td>
<td>100</td>
<td>85</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td>FS 16</td>
<td>Fishery Education, Extension and Economics of Aquaculture</td>
<td>100</td>
<td>85</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>FS P 13</td>
<td>Practical-13 : Fish Immunology</td>
<td>50</td>
<td>--</td>
<td>--</td>
<td>3</td>
</tr>
<tr>
<td>FS P 14</td>
<td>Practical-14 : Fish Pathology, Nutrition and Biochemistry</td>
<td>50</td>
<td>--</td>
<td>--</td>
<td>3</td>
</tr>
<tr>
<td>FS P 15</td>
<td>Practical-15 : Genetics, Molecular Biology and Biotechnology</td>
<td>50</td>
<td>--</td>
<td>--</td>
<td>3</td>
</tr>
<tr>
<td>FS P 16</td>
<td>Practical-16 : Fishery Education, Extension and Economics of Aquaculture</td>
<td>50</td>
<td>--</td>
<td>--</td>
<td>3</td>
</tr>
<tr>
<td>FS- VV</td>
<td>Viva-Voce</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
I – SEMESTER
PAPER – I: LIMNOLOGY (Code No. FS 01)

Unit – I
1. Origin and classification of water bodies – Rivers, lakes and ponds
2. Major rivers and freshwater lakes of India
3. Ecology of ponds, rivers and lakes – Structure and dynamics - energyflow

Unit – II

Unit – III
6. Major groups of organisms in freshwater bodies other than fish
7. Ecological adaptations of freshwater fauna
8. Productivity of water bodies – Primary, secondary, tertiary - Factors affecting primary production

Unit – IV
9. Plankton of freshwater biotopes – Phyto and Zooplankton, their structural dynamics, seasonal variation
10. Plankton sampling: Methods of collection, preservation and identification
11. Benthos of diverse biotopes

Reference Books:
PAPER – II: ESTUARINE AND MARINE BIOLOGY (Code No. FS 02)

Unit – I

1. Estuaries: Origin of estuaries- structure of an estuary(Physico-chemical features)
2. Some typical estuarine habitats of India (Hoogly- Maltah, Mahanadi, Godavari, Krishna, Cauvery and West- coast estuaries).
3. Aquatic pollution.

Unit –II

1. The sea as biological environment – General characters of populations and primary biotic divisions. Terminology of topographical features of the marine environment.
2. Physical environmental factors (Temperature, light, currents, tides and waves)

Unit-III

1. Phytoplankton composition- adaptations.
2. Biological productivity, Primary Production: Methods of measuring primary production,
 Productivity in relation to fisheries.
3. Zooplankton- composition, Zoo-phytoplankton relationships,

Unit –IV

1. Nekton – Composition and ecological adaptations.
2. Intertidal zone- zonation pattern.
Reference Books:

1. Friedrich, H.: Marine Biology
4. Broecker, W.S.: Chemical Oceanography
Unit – I
1. General characters of coelenterates, crustaceans, mollusks and echinoderms and fishes.
2. Classification of Crustacea - up to orders
3. Classification of Mollusca - up to sub-class
4. Major groups of Fishes: Major groups of living Fishes and extinct Fishes – Phylogeny of Fishes Classification of fishes up to sub-class.

Unit – II
5. Larval forms of major invertebrate groups.
7. Food, feeding habits and adaptations of cultured Molluscs

Unit – III
8. Respiration and circulation in crustaceans and Molluscs
9. Excretion in crustaceans and Molluscs

Unit – IV
11. Reproductive patterns in crustaceans, reproductive organs, gonad maturity, spawning and fertilization
12. Endocrine organs in crustaceans and their role in reproduction.
13. Reproductive patterns in Molluscs, reproductive organs, gonad maturity, spawning and fertilization.
Reference Books:

Unit – I

1.0. Definition and basic concepts of biosystematics and taxonomy

1.1. Historical resume of systematics.
1.2. Importance and application of biosystematics
1.3. Taxonomic characters – different kinds, origin of reproductive isolation – biological mechanism of genetic incompatibility.

Unit – II:

2.0. Trends in biosystematics – concepts of different conventional and newer aspects

2.1. Chemotaxonomy
2.2. Cytotaxonomy
2.3. Molecular taxonomy

3.0. Molecular perspective on the conservation of diversity

3.1. Diversity and ecosystem process: Theory, achievements and future directions

Unit – III:

4.0. Dimensions of speciation and taxonomy characters

4.1. Dimensions of speciation- types of lineage changes, production of additional lineage

4.2. Mechanisms of speciation in panmictic and apomictic species

4.3. Species concepts – species category, different species concepts: sub-species and other infra specific categories

4.4. Theories of biological classification, hierarchy of categories

Unit – IV:

5.0. Procedure keys in taxonomy

5.1. Taxonomic procedures – taxonomic collections,
preservation, curetting process of identification

5.2. Taxonomic keys – different kinds of taxonomic keys, their merits and demerits

5.3. Systematic publications – different kinds of publications

5.4. Process of typication and different Zoological types

5.5. International Code of Zoological Nomenclature (ICZN) – its operative principles, interpretation and application of important rules, Zoological nomenclature, formation of scientific names of various taxa.

Suggested Reading Material:

5. E. Mayer. Elements of Taxonomy.

Reference Books:

II – SEMESTER

PAPER – V: Ichthyology (Code No. FS 05)

Unit – I

1.1. Basic fish anatomy – form and function of muscles, gills and gas
 Bladder. Digestive system.
1.2. Skeleton – Endoskeleton – Neurocranium and visceral skeleton.
1.3. Nervous system, Sense Organs and Endocrine organs in fishes.

Unit – II

Locomotion in fishes: Body form and locomotion, fins and locomotion, swimming and non-swimming locomotion.

2.1. Respiration and Respiratory organs of fish.

Age and growth in fishes: Determination of age, length-weight
relationship, annual growth marks, bone marks, determination of
growth and factors affecting the age and growth

Unit – III

3.0 Skin and its derivatives in fish, scales and their significance.
3.1. Blood vascular system: Circulation of blood, modification in relation
to air breathing

3.2 Excretion and Osmo-regulation: Structure and function of the
excretory organs – Major excretory products of fishes. Osmotic and
ionic regulation – acid base balance – Patterns of nitrogen
excretion

Unit – IV

4.0. Food and Feeding habits of fish
4.1. Electric organs and Electroreception of fish.

4.2. Light organs and poison glands of fish

4.3. Reproductive organs of fish.

4.4. Parental care in fishes.
Reference Books:

5. Barnes. General Zoology
6. Day, F. The fishes of India.
Unit – I:

1.0. Fish catch statistics of the world

 A general survey of inland and marine fish catches of India and the world (Available Fishing Potential, Estimation of Inland fish, Estimation of marine fish landings and Fisheries of different Marine States.

2.0. Craft and Gear used in Inland and Marine Fisheries:
 Traditional and mechanized boats and nets used in catching fish

Unit – II :

3.0. Freshwater Fisheries:

 Riverine Fisheries : River systems in India, their ecology and fisheries (Ganga, Brahmaputra, East Coast River system and West Coast river system).

 Reservoir Fisheries : Development, Exploitation and management of Reservoirs with special reference to India – Dams and their effect on fish migration.
 Cold water fisheries: Bio-physico-chemical factors of cold water, cold water fisheries and their importance.

4.0. Estuarine Fisheries:

 Major Estuaries of India and their fisheries (Hooghly – Matlah, Mahanadi, Godavari, Krishna, Cauvery and West Coast estuaries)

 Brackishwater Fisheries : Chilka lake, Pulicat lake and Kerala back waters.

4.1. Migration of fishes, anadromous and catadromous migrations.

4.2. Hilsa fishery – causes of decline and efforts for revival

Unit – III:

5.0. Fisheries of Indian Seas :

5.1. Marine fish catch in India and fisheries of commercial importance
 Fin Fish : 1) Oil Sardines; (2) Mackerels; (3) Tuna and allied fishes; (4) Seer fish; (5) Flat Fish
5.2. Shell fish: 1) Crustaceans; (2) Molluscs; (3) Sea weeds; (4) Edible Oysters.

5.3. Sea weed fishery

6.0. Population Dynamics

6.1. Fish populations and factors affecting the population structures

6.2. Estimation of fish yield and control of over-fishing

Unit – IV :

7.0. Preservation and processing

7.1. Methods of preservation of finfish and shellfish and associated problems.

7.2. Rigor mortis and post-mortem changes

8.0. Fish products and By-products - different types of by-products from finfish and shellfish. Methods of chitin extraction and preparation - major sources and application. Fish meal and fish oil extraction procedures - industrial application.

Practicals :

Suggested Reading Material :

Unit - I

1.0. Principles of Genetics

 1.1. Mendelian inheritance, Monohybrid and dihybrid crosses, Cytological significance.
 1.2. Gene interactions: Incomplete dominance, Co-dominance, Complementary genes, Epistasis. Polymeric genes and Duplicate genes.

 1.3. Polygenic inheritance and multifactorial inheritance.
 1.4. Sex - linked inheritance- Drosophila.

Unit – II :

2.0. Biomembranes.

 2.1. Molecular composition and arrangement, functional consequences

 2.2. Transport across cell membrane: diffusion, active transport and pumps, uniports, symports and antiports

 2.3. Membrane potential
 2.4. Co-transport bysymporters or antiports
 2.5. Transport across epithelia: Transport of macromolecules

Unit – III :

3.0. Cytoskeleton and Cell cycle.

 3.1. Microfilaments and microtubules – structure and dynamics
 3.2. Microtubules and mitosis
 3.3. Cilia and flagella
 3.4. Cell cycle.
 3.5. Cyclines and cyclin dependent kinases
 3.6. Regulation of CDK-cycline activity
Unit – IV:

4.0. Instrumentation.

4.1. Principles and analytical uses of pH meter & Spectrophotometer.

4.3. Electrophoresis.

4.4. Centrifugation.

Suggested Reading Material:

PAPER – VIII: BIOSTATISTICS, POPULATION DYNAMICS AND REMOTE SENSING (Code No. FS 08)

Unit – I
1. Introduction and scope of biostatistics - Concept of sample and Population Sampling methods - Frequency distribution - Classification and tabulation of data - Diagrammatic and graphical presentation.

Unit – II
4. Analysis of variance – One way ANOVA and two way ANOVA
5. Correlation and Regression

Unit – III
6. Probability – Concept and types of probabilities
7. Distribution – Binomial, Poisson, Normal distribution
8. Tests of significance – Chi-square test and Student’s ‘t’ test

Unit – IV
3. Remote sensing- applications in fisheries

Reference Books:
3. Elementary Statistics – Yule and Kendall
4. Introduction to Biostatistics – Sokal & Rohlf
5. Fundamentals of Biostatistics – By Khan and Khanum
III SEMESTER

PAPER – IX: CONSTRUCTION AND MANAGEMENT OF HATCHERIES AND FISH FARMS (Code No. FS 09)

Unit – I

1. Construction of fish farm: Selection of sites - General considerations - land based and open water farms - quantity and quality of water - Size of the farm unit, division of the farm area - water supply and drainage - Construction of different ponds (Nursery, Rearing and Stocking ponds) - pond structure (size, shape depth etc.).

2. Brackish water pond systems: Introduction, site selection engineering investigations, layout designs, design of water management systems, design of water control structures, viz., sluice gates, peripheral dikes and internal bunds

Unit – II

3. Design, construction and management of Finfish hatcheries
4. Design, construction and management of Prawn Hatcheries

Unit – III

Unit – IV

7. Feeding methods: Introduction, different methods of feeding, frequency of feeding, fate of nutrients in feed, water quality and feeding rates

8. Aquatic weeds and their control: Introduction, chemical, biological and mechanical control methods.
Reference Books:

PAPER – X: FRESHWATER AQUACULTURE (Code No. FS 10)

Unit – I

1. Basics of aquaculture: Scope and definition, history of aquaculture, origin and growth, General principles underlying the practices of aquaculture, cultivable finfish and shellfish, species selection – Productivity of a fishpond.

2. Procurement of Stocking material from natural environment, Bund breeding and Induced breeding - Transportation of fish seed and brood fish (Methods of transporting fish seed – Fingerlings and breeders – Control of mortality and measures for reducing mortality during transportation).

Unit – II

3. Culture of Indian major carps: Major species of carps used for culture, culture systems, spawning and fry production, larval rearing, nursery and grow out pond culture, harvesting and marketing

4. Breeding and culture of exotic carps (grass carp, silver carp, common carp),

5. Polyculture system – Definition and various patterns – Mixed fish farming in India – Composite culture of Indigenous and Exotic fishes.

Unit – III

7. Tilapia culture and Eel culture

8. Culture of air breathing fishes- *Heteropneustus, Clarius, Channa, Anabas.*
Unit – IV

8. Freshwater prawn culture with special reference to *Macrobrachium rosenbergii* – Seed procurement from natural resources, breeding and larval rearing of freshwater prawn hatchery and management, management of culture ponds

9. Integrated fish farming: Paddy cum fish culture, Fish cum livestock, Pig cum fish farming, Duck cum fish farming.

Reference Books:

Unit – I :

1. Concept of Blue revolution, Major Objectives of Blue Revolution in India. Brackish water aquaculture - Principles of pond design – Inland and Coastal pond forms, Tank and raceway farms, cage farms, pens – Types of culture systems. Species selection for coastal aquaculture.

2. Water quality management in Aquaculture, Physico-chemical variables: Salinity, temperature, pH, turbidity, BOD, COD, dissolved oxygen, nitrates, phosphates, ammonia, sulphates and silicates

Unit – II :

4. Design and construction of shrimp culture ponds – Liming and fertilization, Seed procurement of shrimps: Natural seed, hatchery reared seed, production and transportation stocking in nursery ponds, rearing and grow-out ponds, pond harvesting. Traditional, extensive, modified extensive, semi-intensive, intensive and super-intensive culture of shrimps and their management and economics

5. Crab culture- Principles of crab hatchery, brood stock, larval and post-larval management. Packing and transportation of seed - Crab culture: Pond design, management of crab farm. Crab culture and crab fattening process – economics, cage culture and pen culture.

Unit – III

8. Principles involved in seed production of lobsters and mussels. Natural resources of shrimp, crab, brackish water fish, oyster and mussel seed

9. Brackish water fish species for culture, management, traditional culture of brackish water fish. Culture of finfish – Sea-bass, milk fish and mullet culture

Unit – IV:

11. Mariculture: Species identification, Lobster culture, Mussel culture, Pearl oyster and pearl production. Edible Oyster culture, Sea-weed culture

12. Feed management – Feeding schedules, protein requirements at different ages of finfish and shellfish, feed formulations, wet feeds and dry feeds
Reference Text Books:

Unit – I:
1. Introduction: Definition, Disease problems in aquaculture, Infectious and non-infectious diseases
2. Viral diseases of fish: Clinical picture, pathology, symptoms and prophylaxis of some common viral diseases – (a) Papillomatosis, (b) Lymphocystis and (c) Infectious Pancreatic Necrosis (IPN)
3. Viral diseases of shrimp: Clinical picture, pathology, symptoms and prophylaxis of some common viral diseases – (a) Monodon baculo virus (MBV), (b) HPV, (c) YHV) Yellow head virus, (d) IHHNV, (e) White spot syndrome (WSSV).

Unit – II:
4. Bacterial diseases of fish: Etiology, clinical symptoms, pathology and prophylaxis of some common bacterial diseases – (a) Bacterial Hemorrhagic Septicemia, (b) Bacterial gill disease and (c) Columnaris disease
5. Bacterial diseases of shrimp: Etiology, clinical symptoms, pathology and prophylaxis of some common bacterial diseases – (a) Vibriosis, (b) Shell disease, (c) Black spot disease, (d) Red disease.
6. Fungal diseases of fish: Clinical picture, symptoms and pathology and prophylaxis of (a) Branchiomycosis, (b) Saprolegniasis, and (c) EUS
7. Fungal diseases of shrimp: Clinical picture, symptoms, pathology and prophylaxis of some common shrimp fungal diseases

Unit – III:
8. Protozoan diseases:
 Protozoan diseases of fish: Clinical picture, pathology, symptoms and prophylaxis of some common diseases – (a) Nodular coccidiosis, (b) Entero-coccidiosis, (c) Whirling disease, and (d) Ichthyophthirius
 Protozoan diseases of shrimp: Clinical picture, pathology, symptoms and prophylaxis of some common viral diseases
9. Metazoan parasites of fish: Clinical picture, pathology, symptoms and prophylaxis of some common diseases – (a) Monogenetic trematode parasites (Dactylogyrus, Gyrodactylus, Diplozoan), (b) Digeneric trematodes (trematode larval and Neodiplostomum), (c) Cestode parasites (Ligula and Dibothriocephalus latus), (d) Nematodes and fish leeches.
Metazoan parasites of shrimp: Clinical picture, pathology, symptoms and prophylaxis of some common diseases

Crustacean parasites of fish: Clinical picture, pathology, symptoms and prophylaxis of some common diseases – (a) Argulus, Ergasilus and Lernea

Unit – IV:
10. Environmental induced diseases of fish. Thermal stress, O₂ deficiency, stress due to pH variations; Gas bubble disease

11. Diseases caused by other factors: Hereditary factors, Tumours of hereditary origin - Hydrocoel, Tumours - benign and malignant

Environmental induced and nutritional deficiency diseases in shrimps.

12. Management practices in fish and shrimp diseases.

Reference Text Books:
2. Wedemeyer Environmental stress and Fish Diseases
7. Sinderman. Fish Diseases, Vol. I. Shell Fish Diseases, Vol. II.
IV SEMESTER

PAPER – XIII: FISH IMMUNOLOGY (Code No. FS 13)

Unit – I: Introduction

1. Background and History of Immunology
2. Application to the Fishery Resource
3. Fish Health and Management
4. Lymphoid system: Lymphoid organs and Cells
5. Crustacean immune system

Unit – II: Factors of Immune Response

6. Cellular components of the Immune System
8. Antibody: Structure and function of Ig M – its properties and diversity
9. Antigen – Antibody interactions

Unit – III: Immune Response

10. Types of Immune Response in various Representative fish groups
11. Non – Specific and Specific Defense Mechanisms
12. Cell mediated immunity and Humoral immunity
13. Immunotoxicology in Fish – Immuno-suppression & Immuno-modulation in response to various toxicants.

Unit – IV: Immunization and Immuno-diagnostic techniques

15. Disease diagnosis using Immuno-diffusion, Agglutination, Blotting techniques and ELISA.
Reference Text Books:

1. Douglas P Anderson: Text Book of Fish Immunology
3. Kuby Immunology
4. Swin and Sahoo: Fish and Shellfish Immunology - An Introduction
Instant Notes in Immunology - P.M. Lydyard, A. Whelam and M.W. Fanger
Unit – I:
1. Physiological adaptations of fishes and shellfishes with reference to temperature, pressure, Osmo-regulation and pH, Bio-luminescence – electric organs - echolocation
2. Water and electrolyte regulation in freshwater, brackish water and marine environment
3. Biological oxidation, nature of oxidation, reduction reactions, release of energy during oxidation and reduction reactions

Unit – II
4. Neuro-secretory system of invertebrates with special reference to crustaceans, Molluscs and echinoderms – synthesis of hormones and release, non-neural endocrine glands and neurohemal organs in crustaceans

Unit – III:
6. Different endocrine glands of fish – thyroid, adrenal, pituitary and other glands, their structure and physiology
7. Nutritive value of fish and shellfish – Fish as food, food commodity, nutritive value of fish and shellfish, composition of raw fish & shellfish

Unit – IV:
8. Carbohydrates – Chemistry and classification – simple and compound sugars – polysaccharides – Carbohydrate metabolism
Globulins – conjugated and nucleoproteins – glycoproteins – nucleotides – purines and pyrimidines

11. Enzymes – classification and kinetics

Reference Text Books:
1. Prosser & Brown. Comparative Physiology
2. Hoar. Comparative Physiology
3. Hoar & Randall. Fish Physiology
4. Lockwood. Physiology of Crustacea
5. Watermann. Physiology of Crustacea
8. Bell Patterson & Smith. Textbook of Physiology & Biochemistry
Unit – I:
1. Principles of cell and molecular biology – Cell structure, Structure of DNA & RNA – Composition and properties
2. DNA replication. Transcription in prokaryotes and eukaryotes
3. Gene structure and function – Gene complementation, cistron, mutan, recon, molecular recombination, gene regulation

Unit – II:
5. Applications of Recombinant DNA technology
6. Molecular hybridization - Labeling of nucleic acids, molecular markers. Amplification of DNA, Blotting techniques – Southern, Northern and Western blotting, DNA Sequencing

Unit – III:
8. Animal vaccine development and production – Production of Vaccines (killed & attenuated)

Unit – IV:
10. Transgenic fish production – Selection of fish species, gene selection, advantages and gene transfer technology – Microinjection technique, electroporation, detection of transgenic fish by PCR applications in transgenic fishes and Biotechnology.
Reference Text Books:

4. Subramonium, T. Endocrine regulation of reproduction and molting in crustacean and its importance in shrimp aquaculture development.
PAPER – XVI : FISHERY EDUCATION, EXTENSION AND ECONOMICS OF AQUACULTURE (Code No. FS 16)

Unit – I :
1. Fisheries training and education in India : Training Institutes, Universities Research Organisations, etc.
2. Institutional funding to fisheries and aquaculture sector. Importance of aquaculture in Indian economy, farm management- scope and importance. Basic principles of economics applied to aquaculture. Scope and characteristics of farming business.

Unit – II :
3. Socio-economic conditions of fishermen and fish farmers- Housing pattern, literacy and employment of fisher folk. Ownership pattern of production, capital investment of fishery equipment, expenditure pattern, edness and credit facilities, general socio-economic patterns.
4. Fishermen Co-operative Societies and their role.

Unit – III :
5. Role of government agencies – Role of NABARD and other central government agencies in the upliftment of fisher folk. Role of state government agencies in various fishery activities – Loans and credits, policies
6. Integrated coastal zone management (ICZM), ocean policy, role of NGO’s.

Unit – IV :
7. Economics of aquaculture – fish culture and shellfish culture.
8. Economic viability, data requirement, analysis of data
10. Fishery Management
 10.1. Yield and optimum catch
 10.2. EEZ and its strategy
 10.3. Fish transport and marketing including fishery co-operatives
Reference Text Books:

M.Sc. FISHERY SCIENCE (SELF-FINANCE)

SYLLABUS FOR PRACTICALS

I SEMESTER:

PRACTICAL – I: LIMNOLOGY (Code FS P 01)

1. Phytoplankton and zooplankton – Identification of major groups up to genus level
2. Estimation of phytoplankton and zooplankton
3. Predaceous freshwater insects
4. Identification of common freshwater benthic organisms
5. Estimation of benthic organisms – Micro, meo and macro benthos
6. Macrophytes in freshwater

PRACTICAL – II: ESTUARINE AND MARINE BIOLOGY (Code FS P 02)

1. Identification of rocky, sandy and muddy shore fauna
2. Phytoplankton and zooplankton estimation
3. Phytoplankton from estuaries
4. Zooplankton from estuaries
5. Enumeration of Zooplankton
6. Phytoplankton and zooplankton from the seawater
PRACTICAL – III : TAXONOMY AND FUNCTIONAL ANATOMY OF SHELL FISH & FINFISH (Code FS P 03)

1. Dissection and display of the visceral organs of freshwater mussels
2. Dissection and demonstration of digestive system of pila
3. Dissection of digestive system of shrimp, prawn and crab
4. Identification and mounting of different appendages of shrimp and prawn
5. Dissection of nervous system of prawn, shrimp and crab
6. Dissection of nervous system of sepia.
7. Methods of food analysis and a study of the guts in fish with different feeding habits
8. Dissection of digestive system of different cultivable species.
 Dissection of Weberian ossicles in cat fish
9. Lateral line nerve of Trichiurus.

PRACTICAL – IV : BioSystematics and Taxonomy

Practical :

1. A practical approach towards Biosystematics and taxonomy
2. Examples representing the different taxa in the order of evolution
3. Molecular perspective of diversity – Identification of species by molecular separation of proteins by examples
4. Diversity and similarity index.
5. Methods of collection, preservation and identification of plankton and representative forms of terrestrial and aquatic fauna
II SEMESTER :

PRACTICAL – V : ICHTHYOLOGY (Code FS P 05)

1. Identification of fishes with suitable examples from each class
2. Dissection of fish for internal anatomy – External characters. Types of scales, fins, types of teeth, structure of alimentary canal, gill rackers
3. Ecology of fishes – identification characters of pelagic, mid pelagic, benthic and migratory fishes
4. Determination of growth in fish

PRACTICAL – VI : CAPTURE FISHERIES (Code FS P 06)

1. Identification of freshwater and brackish water fish.
2. Identification of fish by Morphometric and Meristic characters.
2. Observing different boats, nets and other instruments used in fishery
3. Biological analysis of fish samples for gut contents, maturity stages and fecundity
4. Fieldwork : Visit to fish landing and processing centres

PRACTICAL – VII : GENERAL AND APPLIED ZOOLOGY (Code FS P 07)

1. Light microscopic examination of tissues
2. Preparation of different cell – types Hepatic parenchymal cells, adipocytes, macrophages, neuronal cells, epithelial cells
3. Stages of Mitosis and Meiosis
4. Squash preparation
5. Sub-cellular fractionation – separation of macromolecules
PRACTICAL – VIII: BIOSTATISTICS, POPULATION DYNAMICS AND REMOTE SENSING (Code FS P 08)

Data collection - Organization – calculation of the following

1. Mean, Median, Mode
2. Standard deviation, Standard error
3. Correlation and regression
4. t-test and Chi-square
5. Problems on population dynamics

III SEMESTER:

PRACTICAL – IX: CONSTRUCTION AND MANAGEMENT OF HATCHERIES AND FISH FARMS (Code FS P 09)

1. Design and estimates of area and construction of freshwater fish/shrimp farm
1. Estimation of soil quality, sand, silt, clay.
2. Estimation of soil pH.
3. Design and estimates of fish and shrimp and prawn hatcheries.
5. Design and estimates of cages rafts, race way farm
PRACTICAL – X : FRESHWATER AQUACULTURE (Code FS P 10) :

1. Estimation of Dissolved oxygen.
2. Estimation of pH, Alkalinity & Total Hardness.
3. Primary productivity, Estimation by Light and Dark Bottle method
4. Spotters : Cultivable species of finfish and shellfish based on the theory
4. Dissecting out the pituitary gland and preparing the extract
5. Visit to aquaculture farms, finfish and shellfish hatcheries

PRACTICAL – XI : COASTAL AQUACULTURE (Code FS P 11) :

1. Estimation of metabolic rate of fish/ shellfish.
2. Estimation of Q10
3. Turbidity estimation by Seccidisk.
4. Estimation of Salinity of different brackishwater samples.
5. Estimation of BOD.
6. Estimation of COD.
7. Spotters : Cultivable species of finfish and shellfish based on the theory.
8. Visit to aquaculture farms, finfish and shellfish hatcheries
PRACTICAL – XII : FINFISH AND SHELLFISH PATHOLOGY (Code FS P 12) :

1. Examination of normal and diseased fish - Thorough examination of external surface
2. Autopsy of the diseased fish
3. Host examination – Collection of parasites
4. Slide preparation - fixing - staining and mounting of parasites
5. Histopathology of organs of diseased fish (Sectioning – Staining and Mounting)
6. Slides of fish parasites (Protozoan – Helminth and Copepod)

IV SEMESTER :

PRACTICAL – XIII : FISH IMMUNOLOGY (Code FS P 13) :

1. Immunization - Routes of Immunization
 Preparation of Inoculum
 Immunization Schedule
2. Bleeding of Fish - Different methods adopted
3. Blood film preparation (Giemsa Staining)
4. Differential Count of WBC
5. Cell Viability Test
6. Quantification of Antibody - Agglutination, Precipitation and Immuno – Diffusion (Kit based)
PRACTICAL – XIV : FISH PHYSIOLOGY AND BIOCHEMISTRY
(Code FS P 14)

1. Qualitative determination of carbohydrates, proteins and lipids. Paper Chromatography

2. Quantitative determination of glucose, glycogen and proteins

3. Demonstration of enzyme action in crustacean hepatopancreas. Estimation of pH in the alimentary canal of fish

4. Experiments on osmosis. Methods in Feed formulations by using different raw materials

PRACTICAL – XV : GENETICS, MOLECULAR BIOLOGY AND BIOTECHNOLOGY (Code FS P 15)

1. Location of endocrine glands – Fish pituitary, thyroid, adrenals, gonads

2. Isolation and preparation of pituitary gland extract

3. Reproductive systems of selected fish, prawn and crab

5. Eyestalk ablation experiments

6. Estimation of nucleic acids, DNA & RNA.

PRACTICAL – XVI : FISHERY EDUCATION, EXTENSION AND ECONOMICS OF AQUACULTURE (Code FS P 16)

1. Visiting CIFE, CIFA, FSI, CMFRI etc.,

2. Collecting data of the Fishermen in the nearby fishing villages.

3. Collecting the particulars of Farming practices and its economics.

4. Economics of Freshwater aquaculture, Brackishwater fish culture.

5. Economics of shrimp culture.

M.Sc. FISHERY SCIENCE
(Model Question Papers)
M.Sc. Fishery Science

Paper-I Limnology (FS 01)
(Model Question Paper)

Answer all questions.
All questions carry equal marks

Time: 3hrs. Maximum marks: 85

1. Describe the origin of lakes
 Or
2. What are the major rivers in India

3. Give an account on Physical characters of water
 Or
4. Give an account on Chemical charters of water

5. Write an account on Ecological adaptations of Freshwater Fauna
 Or
6. What are the factors effecting primary production? Explain.

7. Write an essay on seasonal variations of Zooplankton of Freshwater
 Or
8. Describe the Methods of collection and preservation of Plankton.
M.Sc. Fishery Science

Paper- II : ESTUARINE AND MARINE BIOLOGY (FS02)

(Model Question Paper)

Time: 3 hrs Max.Marks:85

Answer ALL questions
All questions carry equal marks

1. Define estuary. Discuss physico-chemical features of typical estuary and add a note on Hoogly-Maltah estuary.
 Or
2. Write an account on aquatic pollution.

3. Justify sea as a biological environment.
 Or
4. Discuss in detail chemistry of the marine environment.

5. Discuss in detail methods of measuring primary production and comment on productivity in relation to fisheries.
 Or
6. Explain zooplankton and phytoplankton relationships with suitable theories.

7. Explain adaptations of Nekton with suitable examples.
 Or
8. Answer any two
 1. Intertidal zonation
 2. Adaptations of sandy shore fauna
 3. Adaptons of muddyshore fauna
1. Write an account on the General characters of mollusks with suitable examples.

Or

2. Classification of crustacean up to orders.

3. Write an essay on food and feeding habits of cultured crustaceans.

Or

4. With suitable diagrams describe the Anatomy and histology of digestive system in fishes.

5. Describe the Respiratory organs and mechanism of respiration in Crustacea

Or

6. Structural adaptation of air breathing fishes.

7. Describe the Endocrine organs in crustaceans and their role in reproduction.

Or

8. Reproduction cycle in fishes with reference to spawning seasons and grounds.
1. Give an account on basic concepts of Biosystematics

Or

2. Describe the importance and application of Biosystematics

3. What are the new trends in Biosystematics? Explain in detail.

Or

4. What are the future directions in the conservation of diversity?

5. Give a detailed account on species concepts.

Or

6. Describe the theories of Biological classification.

7. Explain the procedural keys in Taxonomy.

Or

8. What are the operative principles of ICZN?
Answer all questions.
All questions carry equal marks

Time: 3hrs. Maximum marks: 85

1. Describe the structure of neurocranium and visceral skeleton
 OR

2. Write notes on:
 i) Form and function of muscles
 ii) Gas Bladder

3. Describe the different methods of age determination in fishes
 OR

4. Write an essay on body form and locomotion in fishes

5. Give an account of the process of excretion and osmoregulation in fishes
 OR

6. Write notes on the following:
 i) Heart in fishes (ii) Fish blood

7. Describe the parental care in fishes
 OR

8. Write short notes on:
 a) Bio-geochemical cycles
 b) Ecological factors that impinge on lives of fishes

--0o0--
M.Sc. Fishery Science

Paper – VI Capture Fisheries (FS-06)
(Model Question Paper)

Time : 3 Hrs. Max. Marks : 85

Answer All Questions

1. a) Give a detailed account of craft and gear used in both Inland and Marine Fisheries

OR

2 b) Write a brief note on :
 i) Fish catch statistics
 ii) Fisheries of different maritime states of India

3. a) Describe the major river systems of India and add a detailed note on Fish & Fisheries of Ganga river system

OR

4 b) Write an account on reservoir fisheries of Andhra Pradesh

5. a) Explain the causes of decline and efforts for revival of Hilsa Fishery

OR

6 b) Write a brief account on :
 i) Hoogly – Matlah Estuary (ii) Godavari Estuary

7. a) Give a comparative account of Sardine and Mackeral fishery

OR

8 b) Write a brief account on :
 i) Seaweed fishery (ii) Molluscan fishery
M.Sc. Fishery Science

Paper-VII General and Applied Zoology (FS 07)
(Model Question Paper)

Answer all questions.
All questions carry equal marks

Time: 3hrs. Maximum marks: 85

1. Explain complementary gene and epistatic gene interactions with suitable examples

 Or

2. Explain multi-factorial inheritance with a suitable example

3. Explain the principle and technique of Transmission Electron Microscopy

 Or

4. Explain the principle and mechanism of centrifugation

5. Explain the mechanism of transport across cell membranes

 Or

6. What is membrane potential - Discuss

7. Give an account of structure and dynamics of microfilaments and microtubules

 Or

M.Sc. Fishery Science

Paper – VIII Biostatistics, Population dynamics and Remote Sensing (FS-08)
(Model Question Paper)

Time : 3 Hrs. Max. Marks : 85
Answer All Questions
All Questions carry equal marks

1. What is sampling? Explain various sampling methods.

OR

2. What is measure of central tendency? Calculate mean to the following data

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>10</td>
<td>12</td>
<td>15</td>
<td>18</td>
<td>10</td>
</tr>
</tbody>
</table>

3. Explain standard deviation. Calculate standard deviation and coefficient of variation to the following data:

<table>
<thead>
<tr>
<th>x</th>
<th>5</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>10</td>
<td>12</td>
<td>15</td>
<td>18</td>
<td>11</td>
</tr>
</tbody>
</table>

OR

4. Explain correlation. Calculate correlation coefficient to the given data:

<table>
<thead>
<tr>
<th>X</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

5. What are tests of significance? Explain chi-square test with suitable examples

OR

6. Write notes on the following :
 a) Normal distribution (b) Permutations and combinations

7. Write an account on population attributes controlling the population

OR

8. Explain importance of remote sensing in the fishery applications
M.Sc. Fishery Science

Paper – IX Construction and Management Hatcheries and Fish Farms (FS-09)

(Model Question Paper)

Time : 3 Hrs. Max. Marks: 85

Answer All Questions
All Questions carry equal marks

1. Write an account on construction methods of Nursery, rearing and stocking ponds

Or

2. Write notes on
 a) Design of Water management system
 b) Designing sluice grades

3. Write an account on Fifth Hatchery management

Or

4. describe the methods involving construction of Frown Hatcheries

5. describes the use bio fertilizers in Aquaculture practices

Or

6. Describe the role of lime in aquaculture practices

7. Write an account on feeding schedules in Shrimp culture practices

Or

8. Write an account on aquatic weeds and their control.
1. Write an account on productivity of Fish ponds
 Or
2. Compare the methods of bund breeding and induced breeding in Finfish.
 Or
3. Describe the various methods of culture of Indian major crops
 Or
4. Write an account on the breeding and culture of exotic carps
 Or
5. Describe the culture techniques of freshwater Eel
 Or
6. Describe the life cycle and breeding behavior of Heteropneustis and Clarius
 Or
7. Describe the natural seed resources of freshwater prawn with a note on its life cycle
 Or
8. What is meant by integrated farming? describe the method with reference to paddy cum fish culture in India.
M.Sc. Fishery Science

Paper – XI Coastal Aquaculture (FS-11) (Model Question Paper)

Time: 3 Hrs. Max. Marks: 85

Answer All Questions
All Questions carry equal marks

1. Compare different types of shrimp culture practices in India

Or

2. Describe the role of salinity, temperature and PH in brackish water shrimp and fish culture

3. Describe the methods involved in transportation of shrimp seed

Or

4. Write an account on Crab culture practices

5. Describe the methods involved in Seed production of lobsters

Or

6. Describe the methods involved in brackish water fish culture

7. Write an account on Pearl oyster culture and pearl production

Or

8. Describe the protein requirements and its role in feed formulation in shrimps
M.Sc. Fishery Science

Paper – XII Fin fish and Shellfish Pathology (FS-12)
(Model Question Paper)

Time: 3 Hrs. Max.marks: 85

Answer All Questions
All Questions carry equal marks

1. Explain disease problems which we commonly encounter in aquaculture field
 Or
2. Give an account of pathology, clinical signs, symptoms and prophylaxis of Infections Pancreatic Necrosis

3. Give an account of Etiology, clinical symptoms and prophylaxis of columnaris disease in fishes
 Or
4. Give an account of clinical symptoms and prophylaxis of shrimp fungal diseases

5. Give an account of clinical signs, pathology and prophylaxis of whirling disease
 Or
6. Give an account of infections caused by monogenetic trematodes in fishes

7. Give an account of diseases caused by the deficiency of nutrition
 Or
8. Explain various management practices adopted for managing disease problems in shrimps and fishes.
M.Sc. Fishery Science

Paper – XIII Fish Immunology (FS-13)
(Model Question Paper)

Time: 3 Hrs. Max. Marks : 85
Answer All Questions
All Questions carry equal marks

1. Give an account of immunological organs with suitable diagrams
 Or
2. Explain fish pathogens interactions with suitable examples

3. Explain the mechanisms of specific and non-specific immunity with suitable diagrams
 Or
4. Explain the structure of and function of Ig M molecular with appropriate diagrams

5. Explain cell – mediated immune response with suitable diagrams
 Or

7. Give an account of various immunization procedures adopted for immunization
 Or
8. Give an account of the various types of vaccines used to maintain fish health.
M.Sc. Fishery Science

Paper-XIV Fish Physiology, Nutrition and Biochemistry (FS-14)
(Model Question Paper)

Answer all questions.
All questions carry equal marks

Time: 3hrs. Maximum marks: 85

1) Explain osmoregulation in fishes.

Or

2) What is biological oxidation? Describe the oxidation reduction reactions in electron transport system.

3) Write an account on neurosecretory system of crustaceans.

Or

4) Describe the structure and physiology of pituitary gland of fish.

5) Discuss the nutritive value of fish.

Or

6) Explain various types of nutrition among invertebrates.

7) Give an account on the classification of proteins and add a note on their functions.

Or

8) What are lipids? Classify them giving suitable examples and their presence in different organs.
M.Sc. Fishery Science

Paper-XV: Genetics, Molecular Biology and Biotechnology
(FS-15)
(Model Question Paper)

Answer all questions.
All questions carry equal marks

Time: 3hrs. Maximum marks: 85

1) Explain the structure of DNA and add a note on its replication.

 Or

2) Describe the gene structure and discuss its functions in detail.

3) What is recombinant DNA technology? Explain its applications.

 Or

4) Write a detailed account on blotting techniques.

5) What is induced breeding? Describe the application of the technique in fishes.

 Or

6) Give an account on vaccine production and development in animals.

7) Discuss the application of genetic engineering in fishes with particular reference to gene transfer and hybridization.

 Or

8) What are transgenic fish? Explain microinjection technique in fishes.
M.Sc. FISHERY SCIENCE

PAPER -XVI: Fishery Education, Extension and Economics of Aquaculture (FS XVI)

(Model Question Paper)

Answer any four questions MaxMarks: 85

1. Write an account on Fisheries training institutes and Research organizations in India.

 Or

2. Give an account on Institutional funding to aquaculture.

3. Describe in detail about the Socio – economic conditions of fishermen.

 Or

4. In which way co-operative societies are useful in uplifting fisherman

5. Define and describe the central government upliftment of fishes folk through NABARD.

 Or

6. Ocean role of NGO’s CRZ.

7. Write an account on Economics of aquaculture.

 Or

8. Short notes:
 a. Institutional funding to fisheries
 b. Role of state government agencies in fishery activities.
 c. ICZM (Integrated Coastal Zone Management)