ANDHRA UNIVERSITY

Regulations and Syllabus relating to
BACHELOR OF TECHNOLOGY (B.Tech.)
GEOINFORMATICS ENGINEERING
DEGREE EXAMINATION
(Under Semester System)
(with effect from 2007-2008)

REGULATIONS

1. The Degree of Bachelor of Technology (4 – year course) / Bachelor of Engineering (4 – year course) will be conferred on a candidate who satisfies the following conditions.

1.1 (i) Candidates shall have passed (a) the two year Intermediate Examination with Mathematics and Physical Sciences as optional subjects under Part-III conducted by the Board of Intermediate Education, Andhra Pradesh.

OR

(b) The Intermediate Examination with vocational courses in Engineering and Technology conducted by Board of Intermediate Education, Andhra Pradesh.

OR

(c) The Diploma Examination in Engineering of State Board of Technical Education and Training, Andhra Pradesh, provided they pass 10th Class examination of Board of Secondary Education, Andhra Pradesh or its equivalent examination.

OR

(d) An examination recognized by the Academic Senate of the Andhra University as equivalent to the aforesaid examinations with a minimum of 12 years of schooling with Mathematics and Physical Sciences.

(ii) Candidates must have qualified themselves at the Entrance examination(s) as prescribed by the University for purpose of admission into B.Tech./B.E. courses.

(iii) Candidates from other countries and other states permitted to study B.Tech./B.E. courses by the Govt. of India may be exempted by the Executive Council from appearing for the entrance examination, provided they satisfy all other conditions.

1.2 (i) The normal duration of the course is four academic years for B.Tech./B.E. Degree. The first academic year shall comprise of semester I & II combined together and each of the subsequent academic years shall be divided into two semesters hereinafter referred to as 2nd year Semester – I, 2nd year Semester – II, 3rd year Semester – I, 3rd year Semester – II and so on in chronological order.
(ii) Candidates shall have pursued a regular course of study, as detailed below, for not less than four years and shall have fulfilled the academic requirements laid down and shall have passed all the prescribed examinations.

2.1 A regular course of study during an academic year/semester means a minimum attendance of 75% of all the subjects of the year/semester, as the case may be, computed by *First year common to all branches of BE/B.Tech of AU* totaling the number of periods of lectures, workshops laboratories, drawing, tutorials, project and any other practicals, held in every subject over the year/semester as specified in the schemes of instruction.

However, in special case and for sufficient cause shown, the Vice-Chancellor may, on the recommendation of the Principal and Head of the Department concerned, condone the deficiency in the average attendance to an extent of 9% for reasons such as ill-health, if the application for condonation is submitted at the time of actual illness and is supported by certificate of authorized Medical Officer approved by the Principal.

In the case of students, who participate in activities like N.S.S., N.C.C., Inter-collegiate tournaments conducted by Andhra University, Inter-University tournaments conducted by the Inter-University Board and any such other activities involving the representation of the College/University with the prior approval of the Principal, the candidate may be deemed to have attended the college during the actual period of such activity, solely for the purpose of attendance.

2.2 A candidate who cannot satisfy the attendance requirements as specified in clause 2.1, because of late admission under special circumstances, reasonable and acceptable to the University on the basis of documents, shall attend at least 50% of the total scheduled periods during that academic year and shall have attended at least 90% of the total periods of instructions held from the date of admission.

2.3 A candidate, who fails to satisfy the regulation under clause 2.1 or 2.2, shall not be allowed for the University examinations at the end of the year in case of first year or semester and shall not be allowed for promotion to the next semester of study. He/she shall be required to repeat the entire regular course of study of that academic year in case of first year or semester in case of semester.

2.4 The criteria for promotion from 1 year to II/IV Semester – I and to subsequent Semesters is based on the requisite attendance put up by the candidate and satisfactory completion of the course of study during the year/semester.

2.5 (i) If a candidate fails more than three subjects or if he obtains less than 50% aggregate in the first year, he shall not be promoted to third year.

(ii) If a candidate fails in more than three subjects or if he obtains less than 50% aggregate in the Semester – I and Semester – II of the 2nd year putting together, he shall not be promoted to fourth year.

3.1 The schemes of instruction and examination for the first year course shall be on annual pattern. The period of instruction shall ordinarily be from July to April and shall comprise of a minimum of 180 instruction days. The year-end examinations shall ordinarily be held during the month of May.
3.2 The schemes of instruction and examination for courses other than 1 year shall be on semester pattern. The period of instruction for Semester – I of each year (from 2nd year to final year) shall ordinarily be from July to November and for Semester – II of each year (from 2nd year to final year) shall ordinarily be from December to April. Each semester shall comprise of a minimum of 16 weeks of instruction. The end examinations of Semester – I of each year shall ordinarily be held during the month of November and that of Semester – II of each year shall ordinarily be held during the month of May of the academic year.

3.3 Three shall be no supplementary examinations except for Semester – I and Semester – II of the final year. The supplementary examinations shall ordinarily be held during the month of June/July for Semester – I and Aug./Sept. for Semester – II of the final year.

4.1 The examinations for the B.Tech./B.E./B. Arch. Degree shall be conducted as per the prescribed Schemes for the following branches of study:

(iii) for B.Arch. Degree (5 – Years course) and for any other branch of Engineering / Technology as and when approved by the University from time to time.

4.2 There shall be Regular Examinations at the end of Year / Semester as listed below.

<table>
<thead>
<tr>
<th>Course</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Tech./B.E./B. Arch.</td>
<td>1 Year</td>
</tr>
<tr>
<td>B.Tech./B.E./B. Arch.</td>
<td>Semester – I of 2nd year</td>
</tr>
<tr>
<td>B.Tech./B.E./B. Arch.</td>
<td>Semester – II of 2nd year</td>
</tr>
<tr>
<td>B.Tech./B.E./B. Arch.</td>
<td>Semester – I of 3rd year</td>
</tr>
<tr>
<td>B.Tech./B.E./B. Arch.</td>
<td>Semester – II of 3rd year</td>
</tr>
<tr>
<td>B.Tech./B.E./B. Arch.</td>
<td>Semester – I of 4th year</td>
</tr>
<tr>
<td>B.Tech./B.E./B. Arch.</td>
<td>Semester – II of 4th year</td>
</tr>
<tr>
<td>B. Arch</td>
<td>Semester – I of 5th year</td>
</tr>
<tr>
<td>B. Arch</td>
<td>Semester – II of 5th year</td>
</tr>
</tbody>
</table>

Supplementary Examinations shall be conducted only for B.Tech./B.E. Semester – I & II of 4th year

B.Arch. Semester – I & II of 5th year

5. Assessment for the award of the Degree shall consist of
(i) Internal evaluation of the work done by the students during the year / semester for 30 marks in each theory subject and for 50 marks or such other marks prescribed in the scheme of examination, in each practical and project.

(ii) Year / semester end examination as detailed in the scheme of examination for 70 marks in each theory subject and for 50 marks or such other marks prescribed in the scheme of examination, in each practical and project.

5.1 The marks for the internal evaluation shall be awarded by the concerned teachers based on class work, quiz, viva-voce, two mid-examinations etc., according to a scheme / schedule to be notified by the Department at the beginning of the year / semester.

5.2 The year / semester and examination in each theory subject, for a maximum of 70 marks, shall be conducted by the University through duty constituted Boards of Examiners.

5.3 The year / semester end examination in practicals / project for 50 marks or such other marks prescribed in the scheme of examination, shall be conducted by the University by two examiners one of them being external to the college.

5.4 Candidates shall be required to produce complete and certified records of the work done by them in each of the practical subjects at the time of year / semester end practical examination, failing which they will not be allowed for such examination.

6.1 A candidate shall be declared to have passed in any subject (theory/practical) if he / she secures in the University examinations, not less than 40% in theory and not less than 50% in practicals, provided that the result otherwise not withheld.

6.2 A candidate shall be deemed to have satisfied the minimum requirement for the award of the Degree; (i) If he / she is declared to have passed all the subjects (theory and practicals) included in the Scheme of Examination of I year and subsequent six semesters for the award of B.Tech./B.E. Degree and subsequent eight semesters for the award of B.Arch. Degree.

and

(ii) If he/she secures 50% marks in the overall aggregate of both the University examinations and sessional marks put together of all the subjects of B.Tech./B.E./B.Arch. course.

6.3 Candidates, who fail to satisfy clause 6.2 (ii) may be permitted to attain the overall aggregate upto 50% within 4 years after completing the course of study by appearing at the University examinations only of B.Tech./B.E./B.Arch. subjects of their choice. The so attained overall aggregate shall be limited to 50% only. Any candidate who fails to attain the minimum aggregate of 50% even after such appearances, during a total of eight academic years from the year of admission, shall become ineligible for the award of B.Tech./B.E./B.Arch. Degree.

6.4 A candidate may be permitted to improve his/her performance by reappearing for the whole of the University examinations, only in all the theory subjects of a year / semester,
after completion of the 4-year/5-year course of study, as the case may be, and during the four consecutive examinations only.

Such an improvement can be availed of only once, for each of the annual / semester examinations of the course of study, provided that all the subjects of the year / semester shall have been passed as per the clause 6.1. When considered in its totally, better of the two performances (as a whole but not subject wise) shall be taken into consideration for the purpose of awarding First Class. There shall be no subject wise improvement permitted in any year / semester of study for the above purpose. In any case, no such improvement shall be permitted after completion of eight academic years from the year of admission.

6.5 There shall be no provision for the improvement of sessional marks in any theory or practical subject in any year / semester of study.

7. Whenever there is a change of regulations, scheme and syllabi (such as from Unit pattern to Semester System), a candidate who fails in any subject or who wants to improve his/her performance as per clause 6.4, will be permitted to appear for the University examinations conducted during the subsequent 4 years only, under the previous regulations, scheme and syllabi. There after, such candidates shall be required to appear for such examinations under new regulations and syllabi in the equivalent subjects as decided by the Board of Studies.

8. All the candidates who have satisfied the minimum requirement as specified above, shall be arranged in two classes based on the aggregate marks obtained in the examinations of I year to final year for the award of B.Tech./B.E./B.Arch. Degree.
2nd Year Semester – I

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>Lab</th>
<th>Total</th>
<th>Univ. Exam Hrs</th>
<th>Sessl. Marks</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>GI 201</td>
<td>Information Technology and Applications</td>
<td>4</td>
<td>-</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>GI 202</td>
<td>Engineering Mathematics – III</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>GI 203</td>
<td>Fundamentals of Geology</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>GI 204</td>
<td>Engineering Mechanics</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>GI 205</td>
<td>Geomorphology</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>GI 206</td>
<td>Surveying</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>PRACTICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GI 207</td>
<td>Geology and Geomorphology Practical</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>GI 208</td>
<td>Surveying Practical</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>24</td>
<td>4</td>
<td>12</td>
<td>40</td>
<td>520</td>
<td>280</td>
<td>800</td>
<td>28</td>
</tr>
</tbody>
</table>

2nd Year Semester – II

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>Lab</th>
<th>Total</th>
<th>Univ. Exam Hrs</th>
<th>Sessl. Marks</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>GI 209</td>
<td>Fundamentals of Atmospheric Systems</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>GI 210</td>
<td>Photogrammetry and Photo interpretation</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>GI 211</td>
<td>Remote Sensing - I</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>GI 212</td>
<td>Environmental Studies</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>GI 213</td>
<td>JAVA Programming</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>GI 214</td>
<td>Probability and Statistics</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>PRACTICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GI 215</td>
<td>Photogrammetry and Remote Sensing Practical</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>GI 216</td>
<td>JAVA Programming Practical</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>24</td>
<td>4</td>
<td>12</td>
<td>40</td>
<td>520</td>
<td>280</td>
<td>800</td>
<td>26</td>
</tr>
</tbody>
</table>
3rd Year Semester - I

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>Lab</th>
<th>Total</th>
<th>Univ. Exam Hrs</th>
<th>Univ. Exam Marks</th>
<th>Sessl. Marks</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>GI 301</td>
<td>Principles of Physical Oceanography</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>GI 302</td>
<td>Digital Image Processing – I</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>GI 303</td>
<td>Database Management Systems</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>GI 304</td>
<td>Operations Research</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>GI 305</td>
<td>Remote Sensing–II</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>GI 306</td>
<td>Elective – I</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>PRACTICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GI 307</td>
<td>Digital Image Processing– I Practical</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>50</td>
<td>50</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>GI 308</td>
<td>Database Management Systems Practical</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>50</td>
<td>50</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>GI 309</td>
<td>Soft Skills</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>24</td>
<td>4</td>
<td>12</td>
<td>40</td>
<td>-</td>
<td>520</td>
<td>380</td>
<td>900</td>
<td>29</td>
</tr>
</tbody>
</table>

Elective-I GI 306-1 Geoinformatics for Environmental Monitoring

GI 306-2 Geoinformatics for Earth Science Applications

3rd Year Semester – II

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>Lab</th>
<th>Total</th>
<th>Univ. Exam Hrs</th>
<th>Univ. Exam Marks</th>
<th>Sessl. Marks</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>GI 310</td>
<td>Artificial Intelligence</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>GI 311</td>
<td>Geographic Information Systems-I</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>GI 312</td>
<td>Elements of Cartography</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>GI 313</td>
<td>Hydrology and Geophysics</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>GI 314</td>
<td>Digital Image Processing – II</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>GI 315</td>
<td>Elective – II</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>PRACTICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GI 316</td>
<td>Geographic Information Systems-I</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>50</td>
<td>50</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>GI 317</td>
<td>Digital Image Processing– II Practical</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>50</td>
<td>50</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Industrial Training (Summer vacation)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>24</td>
<td>4</td>
<td>12</td>
<td>40</td>
<td>-</td>
<td>520</td>
<td>280</td>
<td>800</td>
<td>28</td>
</tr>
</tbody>
</table>

Elective-II GI 315-1 Geoinformatics for Ocean Resources Evaluation

GI 315-2 Mathematical Morphology in Image Processing
4th Year Semester - I

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>Lab</th>
<th>Total</th>
<th>Univ. Exam</th>
<th>Sessl Marks</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>GI 401</td>
<td>Digital Photogrammetry</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>GI 402</td>
<td>Microwave Remote Sensing</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>GI 403</td>
<td>Computer Graphics</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>GI 404</td>
<td>Urban Planning and Information Systems</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>GI 405</td>
<td>Economics and Business Finance for Engineers</td>
<td>4</td>
<td>-</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>GI 406</td>
<td>Elective – III</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
</tbody>
</table>

PRACTICAL

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>Lab</th>
<th>Total</th>
<th>Univ. Exam</th>
<th>Sessl Marks</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>GI 407</td>
<td>Digital Photogrammetry Practical</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>GI 408</td>
<td>Urban Planning and Information Systems</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>GI 318</td>
<td>Industrial Training (Assessment)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>2</td>
</tr>
</tbody>
</table>

Total 24 4 12 40 - 520 380 900 30

Elective-III
- GI 406-1 Geoinformatics for Watershed Management
- GI 406-2 Geoinformatics for Coastal Zone Management
- GI 406-3 Geoinformatics for Forestry and Ecology
- GI 406-4 Geoinformatics for Soil and Agriculture Surveys

4th Year Semester – II

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>Lab</th>
<th>Total</th>
<th>Univ. Exam</th>
<th>Sessl Marks</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>GI 409</td>
<td>Geographic Information Systems – II</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>6</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>GI 410</td>
<td>Geodesy and GPS</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>6</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>GI 411</td>
<td>Data Mining & Neural Networks</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>6</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>GI 412</td>
<td>Geographical Information Systems – II Practical</td>
<td>-</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>GI 413</td>
<td>Project Work</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>9</td>
<td>3</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
</tbody>
</table>

Total 12 6 15 33 - 230 170 500 22
SYLLABUS

GI 201 Information Technology and Applications

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam</th>
<th>Sessional</th>
<th>Total</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>-</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
</tbody>
</table>

Unit I Computer Fundamentals
Introduction to computers, types of computers, basic components of computer systems- CPU-memory, Input devices-Keyboard, smart cards, Light pen, touch screen, mouse, digitizer. Output devices – Video display devices, flat panel display, printers, audio output (chap 9)

Unit II Data Acquisition: Chapters (2,3,4,5)
Acquisition of Numbers and Textual Data : Input units, internal representation of numeric data, representation of characters, error detecting codes.
Acquisition of image data : Acquisition of textual data, pictures, storage format for pictures, fundamentals of image compression, image acquisition with digital camera.
Acquiring Audio Data : basics of audio signals, acquiring and storing audio signals.
Acquisition of Video: Capturing a moving scene with a video camera, compression of video data, MPEG compression standard.

Unit III Computer Software (chap 10)
Overview of Operating Systems: operating system fundamentals, software – system software, application software (overview of Word, Excel, PowerPoint). Overview of Windows; Linux (Windows-Desktop-Control panel -Start menu; Operations on file (new, save, copy, edit, etc).

Unit IV Business Information Systems and E-commerce (chap 16 ,17)
Types of information needed by organizations, Management structure and information needs, design of an operational information system, system life cycle, computer system for transaction processing.
E-commerce : Introduction, Business to business, business to customer and customer to customer e-commerce, their advantages and disadvantages. E-commerce system architecture, payment schemes, electronic cheque payment, Cash transactions, EDI, Intellectual properties rights and e-commerce.

Unit V Computer Networks and Internet. (Chapter 8, 15)
Overview of computer Networks and Internet: computer networks - LA N, WAN and their applications, intranet, naming computers connected to internet.
Some Internet Applications : Email, Information browsing, WWW, Information retrieval from the web, Other facilities provided by the browser, audio on the internet, pictures, animation, video on the internet. Introduction to applications such as Google maps and Google earth.

Text books
1. Introduction to Information technology by V. Rajaraman, PHI

Reference Books
1. Introduction to Computers by Peter Norton.
Unit – I
Vector Calculus: Differentiation of Vectors, Curves in Space, Velocity and acceleration, relative velocity and acceleration, scalar and vector point functions, vector operator V, V applied to scalar point functions, gradient, V applied to vector point functions, divergence and curl.

Unit - II
Physical interpretations of V.F and VxF, V applied twice to point functions, V applied to products of point functions, integration of vector, line integral, circulation, work surface integral-flux, Green’s theorem in the plane, Stoke’s theorem, volume integral, divergence theorem, irrotational and solenoidal fields, Green’s theorem, Introduction of orthogonal curvilinear coordinates: Cylindrical, spherical and polar coordinates.

Unit - III
Introduction Of Partial Differential Equations: Formation of partial differential equations, solutions of PDEs, equations solvable by direct integration, linear equations of first order, homogeneous linear equations with constant coefficients, rules for finding the complimentary function, rules of finding the particular integral, working procedure to solve homogeneous linear equations if any order, non homogeneous linear equations.

Unit - IV
Applications Of Partial Differential Equations: Method of separation of variables, Vibrations of a stretched string-wave equations, one-dimensional and two-dimensional heat flow equations, solution of Laplace equation, Laplace equation in polar co-ordinates.

Unit - V

Text Book:

References:
1. A Text Book on Engineering Mathematics by M.P. Bali et. al.,
2. Higher Engineering Mathematics by M.K. Venkata Raman,
3. Advanced Mathematics for Engineering Students, Vol-2 & 3, by Narayanan et. al.,
4. Advanced Engineering Mathematics by Erwin Kreyszig,
5. Engineering Mathematics by P.P. Gutpa,
6. Advanced Engineering Mathematics by V.P. Jaggi and A.B. Mathur,
7. Engineering Mathematics by S.S. Sastry,
Unit – I General Geology
Branches of geology – Origin of the Earth, Age of the Earth, Interior of the Earth, Isostasy, Elementary knowledge on continental drift and plate tectonics with evidences. Earthquakes, Volcanoes, Groundwater

Unit – II Mineralogy
Elementary knowledge on symmetry elements of important crystallographic systems – physical properties of minerals – study of the following rock forming minerals – Olvine family, Quartz family. Feldspar family, Amphibole Family, Pyroxene family, Mica family, Augite, Hornblende, Biotite, Muscovite, calcite, Garnet – properties, behavior and engineering significance of clay minerals – Fundamentals of process of formation of ore minerals – Coal and petroleum – Their origin and occurrence in India.

Unit – III Petrology
Classification of rocks – Distinction between Igneous, Sedimentary and Metamorphic rocks. Description occurrence, distribution of following rocks. **Igneous rocks** – Granite, Syenite, Diorite, Gabbro, Pegmatite, Dolerite and Basalt **Sedimentary rocks sandstone**, Limestone, shale, Conglomerate and breccia. **Metamorphic rocks**. Quartzite, Marble, Slate, Phyllite, Gniess and Schist, Khondalite, Charnockite.

Unit – IV Structural Geology
Strike, Dip, Plunge, Brunton compass, clinometre compass, - Description and classification of folds, faults, Joints and Unconformities. **Stratigraphy**
Principles of Stratigraphy, Geological time scale, -Major geological formation of India, Archaеans group, Cuddapahs system, Vindhyan formations, Gondwana system, Deccan traps. Geology and Mineral Resources of Andhra Pradesh.

Unit – V Geological investigations:

Text:

Reference:
GI 204 Engineering Mechanics

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam</th>
<th>Sessnl.</th>
<th>Total</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>-</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>30</td>
<td>100</td>
</tr>
</tbody>
</table>

Unit - II: Equilibrium: Free body diagrams – Equations of equilibrium for a concurrent coplanar force system – Equilibrium of Bodies acted on by two or three forces - Equilibrium of Bodies acted on by non-concurrent coplanar force system - Equilibrium of Bodies acted on by parallel, non-coplanar force system – Equilibrium of non-concurrent, non-coplanar, non-parallel force system.

Text / References:
2) Engineering Mechanics by Timoshenko and D. H. Young.
3) Engineering Mechanics by J. L. Meriam
4) Mechanics for Engineers Statics and Dynamics by F. B. Beer and E. R. Johnston

GI 205 Geomorphology

| Unit I | Definition and scope of geomorphology; Fundamental concepts in geomorphology; Endogenetic processes: volcanism and tectonism; Exogenetic processes: weathering, Mass-wasting and erosion; geomorphic agents. |

| Unit II | Fluvial processes and landforms: valleys and valley forming processes - associated features; Alluvium – active and relict alluvium; Floodplain morphology; Types of streams - Genetic classification of streams; Alluvial fans and deltas. Shore Zone processes and landforms: shore line, shore zone and coast; Wind waves, tides, littoral currents, storm surges and tsunamis; Erosional and depositional landforms. |

| Unit III | Glacial processes and landforms: ice and glaciers; types of glaciers; glacial motion; Regimen of glaciers – nourishment and wastage of glaciers; active, passive and dead glaciers; erosional and depositional landforms. Eolian processes and landforms; dominance of wind processes in arid and semi-arid regions; erosional and depositional landforms. |

| Unit IV | Scope and significance of soil studies; soil and regolith; soil forming factors – geological, climatic, topographical, biological and time factors; Soil components – mineral matter, organic matter, soil water and soil air; Soil Properties – colour, texture, structure, acidity and alkalinity; soil profile; Pedogenic regimes – laterisation, gleisation, podzologisation, calcification and salinisation; soil classifications – zonal system, and Seventh approximation system. |

| Unit V | Applied geomorphology: landform interpretation for groundwater explorations; mineral exploration – surface expressions of ore bodies; weathering residues, placer deposits; applications in engineering projects: route selection – highways, canals, transmission lines; site selections – dam sites, industries; townships. |
Text Books

GI 206 Surveying

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam</th>
<th>Sessnl. Marks</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>3</td>
<td>70</td>
<td>100</td>
<td>4</td>
</tr>
</tbody>
</table>

Unit – 1
Principles of Surveying, Classification of Surveying, Introduction to various traditional surveys – Chain Surveying: Instruments, Sources of errors – Compass Surveying: Definitions of Bearings, Theory of Magnetic Compass, Problems and errors in compass survey – Plane Table Surveying: Working Operations, Leveling – Centering – Orientation, Methods of Plane Table Surveying.

Unit – 2

Unit – 3
Tacheometric Surveying – Principles of Tacheometry, Stadia method - Principle of Stadia method, Distance and Elevation formulae for staff vertical & staff normal, Subtense method - Principle of Subtense method, vertical base observations, horizontal base subtense measurement, methods of reading the staff, Tangential method – constant base tangential measurements, variable base tangential measurements.

Unit – 4

Unit – 5

Text Books
GI 207 Geology and Geomorphology Practical

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam Hrs.</th>
<th>Univ. Exam Marks</th>
<th>Sessnl. Marks</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>50</td>
<td>50</td>
<td>100</td>
<td>2</td>
</tr>
</tbody>
</table>

a. Geology exercises
Geological maps and sections
Identification of some important rock forming minerals.
Description and Identification of typical rocks.
Description structural models-folds, faults and joints.

b. Geomorphology exercises
Description of landform models
Topographic profiles – projected and composite profiles
Preparation of slope maps
Stream profiles from topographic maps
Landform interpretation from topographic maps
Drainage Morphometry

GI 208 Surveying Practical

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam Hrs.</th>
<th>Univ. Exam Marks</th>
<th>Sessnl. Marks</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6</td>
<td>3</td>
<td>50</td>
<td>50</td>
<td>100</td>
<td>2</td>
</tr>
</tbody>
</table>

Chain survey
Prismatic Compass survey
Dumpy Level Survey
Plane Table Survey
Total Station Survey
GPS Survey
Integration of field surveys with various software.

GI 209 Fundamentals of Atmospheric Systems

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam Hrs.</th>
<th>Univ. Exam Marks</th>
<th>Sessnl. Marks</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>-</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>4</td>
</tr>
</tbody>
</table>

Unit I
measurement of sunshine and insolation; Horizontal distribution, seasonal distribution, vertical distribution, temperature inversion.

Unit II

Air Pressure and winds: Measurement of air pressure, variations of air pressure and weather, pressure gradient; Pressure variations: diurnal and seasonal; basic atmospheric pressure patterns; vertical variation in air pressure; horizontal distribution of pressure; seasonal variations in pressure pattern; Wind: Factors affecting wind direction and speed, wind observation and measurement; wind shift.

Unit III

Unit IV

Weather disturbances:

Air masses: source regions, classification, air mass modification. Fronts: General characteristics, frontogenesis and frontolysis, classification of fronts. Tropical disturbances: Types of tropical disturbances, origin of tropical cyclones, movement and tracks of hurricanes, hurricane seasons, regional distribution. Thunderstorms, tornadoes and waterspouts: Thunderstorms-origin and structure, stage of development, Thunderstorm electricity and thunder, precipitation in thunder storm, classification and distribution; tornadoes and waterspouts

Unit V

Weather forecasting and analysis: Historical background, how weather forecasting in done, types of weather forecasts, weather forecasting methods, satellites in weather forecasting. Applied climatology: climate and natural vegetation, climate and agriculture, climate and animal husbandry, climate and housing, Air pollution and health, climate and human comfort, climate and urban planning.

Textbooks:

GI 210 Photogrammetry and Photo interpretation

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam Hrs.</th>
<th>Univ. Exam Marks</th>
<th>Sessnl. Marks</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>1</td>
<td>-</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>4</td>
</tr>
</tbody>
</table>

Unit I
Fundamentals of Photogrammetry and photo interpretation; History of aerial photography; Types of photographs: vertical and oblique photographs.
Aerial cameras: lens, optical axis, focal length, focal plane and fiducial marks; Principal Point; Geometry of vertical photographs

Unit II
Scale on vertical photographs – over flat terrain and variable terrain; average photo scale; Methods of determining the scale on vertical photographs
Overlap, side lap and flight planning
Stereoscopic viewing of vertical photographs; Depth perception; Stereoscopes and their use; Vertical exaggeration – factors involved and determination

Unit III
Relief Displacement on vertical photographs
Determination of horizontal ground lengths, directions and angles from photo coordinates
Parallax: \(Y \)-parallax and \(X \)-parallax; Parallax measurement – monoscopic method and stereoscopic method – principle of floating mark

Unit IV
Aerial mosaics: comparison with maps
Elements of air photo pattern: rock types, landforms, surface drainage patterns, erosion features, gray tones, vegetative and land use details

Unit V
Applications of aerial photographic techniques in soil surveys; forest surveys, agricultural and land use planning; geological and geomorphological investigations; civil engineering projects

Textbooks
3. ‘Aerial Photographic interpretation’ by Donald R. Lueder, McGrah Hill 1959
Unit – I Introduction:
Sun and atmosphere, Concept of Signature, Remote sensing system, Observe Earth from space, Remote sensing-A historic prospective, Indian remote sensing programme, The earth Observation Evolution – Paradigm shift, Legal and ethical aspect.
Electro Magnetic Radiation (EMR): Velocity of EM radiation, Polarization, coherent radiation, Propagation of EM waves, from one medium to another, Attenuation, quantum nature of EM radiation, Thermal radiation, Source of EM radiation, for Remote sensing
Physical Basis of Signature: Signature in the Reflective OIR region, Thermal Infrared (TIR), Microwave region.

Unit – II EMR Interaction with Atmosphere

Unit – III Remote Sensor – An over view
Classification of Remote sensor, selection of sensor parameters, spatial resolution, spectral resolution, Radiometric resolution, Temporal resolution,
Optical and Infrared sensors: Quality of Image in Optical system, Imaging mode, Photographic camera, Television camera, Opto-mechanical scanners, Opto-mechanical scanners operated from satellites, Push broom cameras, Whisk broom cameras. Microwave sensors.

Unit- IV Platforms
Principles of satellite Missions, Locating satellites in space, Types of Orbit, Airborne platforms – balloons, helicopters, aircrafts – Spaceborne platforms – Sun synchronous and Geosynchronous satellites – Projectile geometry – Land coverage – Repetivity – On track and Across track stereovision capability. IRs, LANDSAT, SPOT, RUSSIAN, CANADA, JAPAN, EUROPEAN, CAHAINA SATELLITE series.

Unit- V Thermal Imaging
IR - radiometers, Airborne and Satellite TTR scanner system
Characteristics of IR images
i) Scanner distortion, ii) image irregularities, iii) Film density and recorded iv) Temperature ranges
Effects of weather on images
i) Clouds, ii) Surface winds, iii) Penetration of smoke plumes
Interpretation of thermal imagery
Advantages of Thermal imagery

Textbooks

References

GI 212 Environmental Studies

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam</th>
<th>Sessional Marks</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>-</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>100</td>
<td>4</td>
</tr>
</tbody>
</table>

Module 1: Introduction – Definition, scope and importance; measuring and defining environmental development indicators
(1 Lecture)
Module 2: Ecosystems: introduction, types, characteristic features, structure and functions of Ecosystems – Forest, Grassland, Desert, Aquatic (lakes, rivers and estuaries)
(2 Lectures)
Module 3: Environment and natural Resource Management:
Land resources – land as a resource; Common property resources; Land degradation; Soil erosion and desertification; effects of modern agriculture; fertilizer-pesticide problems
Forest resources – Use and over-exploitation
Mining and Dams – their effect on forest and tribal people
Energy resources – Energy needs; renewable and non-renewable energy sources; use of alternative energy sources; impact of energy use on environment
(8 Lectures)
Module 4: Bio-diversity and its conservation
Value of bio-diversity – consumptive and productive use; social, ethical aesthetic and option values
Bio-geographical classification of India – India as mega diversity habitat
Treats to bio-diversity – hotspots; habitat loss; poaching of wildlife; loss of species; seeds, etc.
Conservation of bio-diversity – in situ and ex situ conservation

(3 Lectures)

Module 5: Environmental Pollution – Local and Global Issues
Causes, effects and control measures of air pollution, indoor air pollution;
Water pollution; Soil pollution; Marine pollution; Noise pollution; Solid waste management – composting, vermiculture; Urban and industrial wastes, recycling and re-use
Nature of thermal pollution and nuclear hazards; Global warming; Acid rain;
Ozone depletion
(8 Lectures)

Module 6: Environmental problems in India: Drinking water; Sanitation and public health;
Effects of activities on the quality of environment, Urbanisation, Transportation, Industrialisation, Green revolution;
Water scarcity and Groundwater depletion; Controversies on major dams – resettlement and rehabilitation of people – problems and concerns;
Rainwater harvesting; cloud seeding and watershed management
(5 Lectures)

Module 7: Economy and Environment: The economy and environment interaction,
Economics of development, preservation and conservation; Sustainability – theory and practice; Limits of growth; Equitable use of resources for sustainable lifestyles; Environmental impact assessment
(4 Lectures)

Module 8: Social issues and the environment: Population growth and environment;
Environmental education; Environmental movements; Environment vs. development
Energy resources: Energy needs; renewable and non-renewable energy sources; Use of alternative energy sources; Impact of energy use on environment
(2 Lectures)

Module 9: Institutions and governance: Regulation by government; Monitoring and enforcement of environmental regulation;
Environmental Acts: Water (Prevention and control of pollution) act; Air (prevention and control of pollution) act; Environmental protection act; Wildlife protection act; Forest conservation act; Coastal zone regulations
Institutions and policies relating to India
Environmental governance
(5 Lectures)

World Commission for Environmental Development (WCED)
(2 Lectures)

Module 11: Case Studies: Chipko Movement; Narmada Bachao Andolan;
Silent Valley Project; Madhuvar Refinery and Taj Mahal; Industrialisation of Pattancheru;
Nuclear Reactor at Nagarjuna Sagar; Tehri dam; Ralegaon Siddhi (Anna Hazare);
Kolleru Lake – aquaculture; Fluorosis in Andhra Pradesh
(3 Lectures)

Module 12: Fieldwork:
Visit to a local area to document and mapping of environmental assets - river/forest/grass/land/hill/mountain
Study of local environment – common plants, insects, birds
Study of simple ecosystems – pond, river, hillslopes, etc
Visits to industries – water treatment plants, effluent treatment plants

(5 Lectures)

Textbooks
2. Principles of Environmental Science and Engineering, P. Venugopala Rao, Pretice-Hall India (P) Ltd., New Delhi
3. Environmental Sciences, P.D. Sarma
4. Environmental Studies, S. Mukherjee and A. Ghosh, Books and Allied (P) Ltd., Kolkata

GI 213 Java Programming

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam</th>
<th>Sessional Marks</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>1</td>
<td>-</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>100</td>
<td>4</td>
</tr>
</tbody>
</table>

Unit 1
Fundamentals of Object-Oriented Programming: Basic concepts, benefits and applications
JAVA Evolution: Features of java, relation with Internet and WWW

Unit 2

Unit 3
Advanced OOP in Java: Arrays, Strings and Vectors
Inheritance basics, Member access and inheritance, Using super class, Creating a multilevel hierarchy, Method overriding, Dynamic method dispatch, Using abstract classes, Using final with inheritance, The object class.

Unit 4
Packages: Putting Classes Together, Defining a package, Understanding classpath, Importing Packages, Defining an interface, Implementing interfaces, Applying Interfaces, Variable in interfaces.
Multithreaded Programming, Managing Errors and Exceptions

Unit 5
Applet Programming: The applet class, Applet architecture, An applet skeleton: Initialization and termination, Overriding update(), Status window, Handling events: The event class, Processing mouse events, Handling keyboard events, HTML applet tag, Passing parameters to applets, Applet context and show document(), The audioclip & appletstub interface, Outputting to the console. Swing concepts, JDBC connectivity Managing Input/Output Files in JAVA.
Text Books:
1. Programming with Java: A Primer, 3E, E BALAGURUSAMY, Tata McGraw Hill

GI 214 Probability and Statistics

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam</th>
<th>Sessnl.</th>
<th>Total</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>1</td>
<td>-</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
</tbody>
</table>

Unit–I
Probability And Random Variables
Probability concepts, Random variables, Moments, Moment Generating function, Binomial, Poisson, Geometric, Negative binomial, Exponential, Gamma, Weibull distributions, Functions of random variable, Chebychev inequality.

Unit –II
Two Dimensional Random Variables
Marginal and conditional distributions, Covariance, Correlation and Regression, Transformation of random variables, Central limit theorem.

Unit – III
Random Processes
Classification, Stationary and Markov processes, Poisson process, Pure birth process, Birth and death process, Markov chains, Markovian queueing models.

Unit – IV
Reliability Engineering
Concepts of reliability, Hazard function, Series and parallel systems, Reliability and Availability of Markovian systems, Maintainability, Preventive maintenance.

Unit – V
Design of Experiments And Quality Control
Completely randomised design, Randomised block design, Latin square design, Process control, Control charts of measurements and attributes, Tolerance limits.

Textbooks
GI 215 Photogrammetry and Remote Sensing Practical

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam Hrs</th>
<th>Univ. Exam Marks</th>
<th>Sessnl. Marks</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6</td>
<td>3</td>
<td>50</td>
<td>50</td>
<td>100</td>
<td>2</td>
</tr>
</tbody>
</table>

a. Aerial Photographic interpretation
- Testing stereo vision
- Use of Lens stereoscope and Mirror stereoscope
- Use of Parallax Bar for height calculation from aerial photographs
- Calculation of scale of the photographs
- Marking Principal point and conjugate principal point on the stereopairs
- Preparation of aerial mosaics
- Interpretation of aerial photographs for identification of landforms of fluvial, Aeolian, glacial, coastal, volcanic and arid processes
- Identification of tectonic elements from aerial photographs

b. Remote Sensing Practical
- Operating Spectroradiometer in the field to collect radiometric values from various natural and artificial features of land surface.
- Identification of various land features from the satellite images in association with topo sheets and field visits.
- Calculations of coverage of satellite images for different latitudes, number of swath paths for various satellites.
- Study of imagery indexes
- Visual study of single band images
- Visual study of multi-spectral images
- Preparation of base maps from the topo sheets
- Preparation of thematic maps from visual interpretation

GI 216 JAVA Programming Practical

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam Hrs</th>
<th>Univ. Exam Marks</th>
<th>Sessnl. Marks</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6</td>
<td>3</td>
<td>50</td>
<td>50</td>
<td>100</td>
<td>2</td>
</tr>
</tbody>
</table>

1. Programs implementation streams and file operations using JAVA
2. Programs on implementation of packages in JAVA
3. Programs on exception handling mechanism through JAVA
4. Programs on Applets and applications
5. Programs on implementation of multi-threading in JAVA
6. Fundamental applications using swing
GI 301 Principles of Physical Oceanography

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam Hrs.</th>
<th>Sessnl. Marks</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>-</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>100</td>
<td>4</td>
</tr>
</tbody>
</table>

Unit I

Unit II

Unit III

Unit IV

Unit V

Text Books:
GI 302 Digital Image Processing – 1

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam</th>
<th>Sessnl.</th>
<th>Total</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>-</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
</tbody>
</table>

Unit -1

Unit -2

Unit -3
Image Pre-processing – Sources and Corrections of Radiometric distortions, Sources and Corrections of Geometric distortions, Image registration.

Unit -4
Interpretation of Digital Image Data – Approaches to Interpretation, Forms of Imagery for image interpretation, Computer processing for image interpretation, Quantitative analysis.

Unit -5

Textbooks

GI 303 Database Management Systems

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam</th>
<th>Sessnl.</th>
<th>Total</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
</tbody>
</table>

Chapter 1 - Databases and Database Users
Introduction, Characteristics of the Database Approach, Actors on the Scene, Workers behind the Scene, Advantages of Using the DBMS Approach, A Brief History of Database Applications, When Not to Use a DBMS.

Chapter 2 - Database System Concepts and Architecture
Data Models, Schemas, and Instances, Three-Schema Architecture and Data Independence, Database Languages and Interfaces, The Database System Environment, Centralized and Client/Server Architectures for DBMSs, Classification of Database Management Systems.
Chapter 3 - Data Modeling Using the Entity-Relationship (ER) Model
Using High-Level Conceptual Data Models for Database Design, An Example Database
Application, Entity Types, Entity Sets, Attributes, and Keys, Relationship Types,
Relationship Sets, Roles, and Structural Constraints, Weak Entity Types, Refining the ER
Design for the COMPANY Database, ER Diagrams, Naming Conventions, and Design
Issues, Relationship Types of Degree Higher Than Two.

Chapter 4 - The Relational Data Model and Relational Database Constraints
Relational Model Concepts, Relational Model Constraints and Relational Database Schemas,
Update Operations, Transactions, and Dealing with Constraint Violations

Chapter 5 - The Relational Algebra and Relational Calculus
Unary Relational Operations: SELECT and PROJECT, Relational Algebra Operations from
Set Theory, Binary Relational Operations: JOIN and DIVISION, Additional Relational
Operations, Examples of Queries in Relational Algebra, The Tuple Relational Calculus, The
Domain Relational Calculus

Chapter 6 - Relational Database Design by ERand EER-to-Relational Mapping
Relational Database Design Using ER-to-Relational Mapping, Mapping EER Model ,
Constructs to Relations

Chapter 7 - SQL-99: Schema Definition, Constraints, Queries, and Views
SQL Data Definition and Data Types, Specifying Constraints in SQL,Schema Change
Statements in SQL, Basic Queries in SQL, More Complex SQL Queries
INSERT, DELETE, and UPDATE Statements in SQL, Specifying Constraints as Assertions
and Triggers, Views (Virtual Tables) in SQL, Additional Features of SQL

Chapter 8 - Introduction to SQL Programming Techniques
Database Programming: Issues and Techniques, Embedded SQL, Dynamic SQL, and SQLJ
Database Programming with Function Calls: SQL/CLI and JDBC, Database Stored
Procedures and SQL/PSM

Chapter 9 - Functional Dependencies and Normalization for Relational Databases
Informal Design Guidelines for Relation Schemas, Functional Dependencies,
Normal Forms Based on Primary Keys, General Definitions of Second and Third Normal
Forms, Boyce-Codd Normal Form

Chapter 10 - Relational Database Design Algorithms and Further Dependencies
Properties of Relational Decompositions, Algorithms for Relational Database Schema Design
, Multivalued Dependencies and Fourth Normal Form , Join Dependencies and Fifth Normal
Form, Inclusion Dependencies, Other Dependencies and Normal Forms

Chapter 11 Emerging Database Technologies and Applications
Mobile Databases, Multimedia Databases , Geographic Information Systems (GIS), Genome
Data Management

Fundamentals of Database Systems, 5/E (Chap 1-3,5-11 and 30) Ramez Elmasri, Shamkant
B. Navathe, Pearson Ed.

Reference :
 GrawHill
GI 304 Operations Research

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam</th>
<th>Sessnl.</th>
<th>Total</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hrs.</td>
<td>Marks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>4</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
</tbody>
</table>

Unit I
Overview of operations research: OR models, OR techniques
Linear Programming: introduction, graphical solution, graphical sensitivity analysis, standard form of linear programming problems, basic feasible solutions, unrestricted variables, simplex algorithms, artificial variables, big M and two phase method, degeneracy, alternative optima, unbounded solutions, infeasible solutions.

Unit II
Dual problems, relation between primal and dual problems, dual simplex method, integer programming, branch and bound algorithms cutting plan algorithm

Unit III
Transportation model, starting solutions, northwest corner rule, lowest cost method, Vogels approximation method, transportation algorithms, assignment problem, Hungarian method

Unit IV
Network Models, Project scheduling - CPM and PERT - their algorithms

Unit V
Dynamic Programming: recursive nature of dynamic programming, forward and backward recursion
Game theory: two persons zero sum games, mixed strategy games and their algorithms

Text books
1) Introductions to operations Research by Hillier/Lieberman, Tata McGraw Hill
2) Operations Research by R.Panneerselvan, prentice Hall of India

RS 305 Remote Sensing - II

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam</th>
<th>Sessnl.</th>
<th>Total</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hrs.</td>
<td>Marks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>-</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
</tbody>
</table>

Unit-I Data reception, Data processing & Data generation
Satellite Data Receiving Station, Data generation,
Data processing & correction
Remote Sensing Satellites
Data Acquisition Systems In Remote Sensing
Multispectral Scanner (MSS) used in Landsat series satellites
Return Beam Vidicon (RBV) used in Landsat series satellites
Thematic Mapper (TM) used in Landsat series satellites
High Resolution Visible (HRV) Imager used in SPOT Satellite
Linear Image Self Scanning (LISS) Camera used in IRS series
Thermal Scanners
Satellite Data Products available in India and world

Unit-II Radiometric and Geometric corrections
Radiometric corrections Random noise correction
Atmospheric correction, Geometric errors and corrections, Distortion evaluated from tracking data, distortion evaluated from ground control Image correction.
Ground Investigation in support of Remote sensing
Uses of ground data, calibration correction, Interpretation of properties, Training sets, Accuracy evaluation, test sites, Ground truth Instruments and spectral signature, Spectral Reflectance and spectral signature of vegetation other materials.

Unit-III Image Interpretation
Introduction to image Interpretation
Basic principles of Image Interpretation
Elements of Image Interpretation
Techniques of image Interpretation
Interpretation Keys
Methods of searching and sequence of Interpretation
Methods of analysis and Reference levels

Unit-IV Data Interpretation
Spectral data products interpretation
Thermal Data Interpretation
Microwave data Interpretation

Unit-V Applications
Scope of Remote Sensing applications - potentials and limitations
Resource mapping and integrated information for sustainable development
Resource evaluation: Soils, minerals forest and agriculture.

Environmental applications
Mapping and monitoring of Natural hazards
 a) Cyclones / floods b) Droughts c) Landslides d) Volcanoes e) Earthquakes
Analysis of human-induced hazards
 a) Pollution b) Deforestation c) Erosion d) Siltation
 e) Degradation of water bodies and wetlands

Text Books
2. Remote Sensing in hydrology, Engman, E.T. Gurney, R.J.
3. Remote Sensing in water management in command areas, Govardhan, V.

GI 306-1 Geoinformatics for Environmental Monitoring (Elective-I)

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam Hrs</th>
<th>Univ. Exam Marks</th>
<th>Sessnl. Marks</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>-</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>4</td>
</tr>
</tbody>
</table>

Unit –I Water and the Environment

Unit –II Urban Environment
Unit - III Marine Environment

Unit –IV Air pollution and Global Climatology

Unit –V Case studies

References

OR

GI 306-2 Geoinformatics for Earth Science Applications (Elective-I)

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam Hrs.</th>
<th>Univ. Exam Marks</th>
<th>Sessnl. Marks</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>-</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>4</td>
</tr>
</tbody>
</table>

Unit – I: Remote sensing applications to lithology
Introduction, Scope for Geological applications in Multi spectral data, Thermal Data, Microwave data. Mapping of Broad scale Lithological Units in General, Igneous, sedimentary and metamorphic rock, Identification of Mineral Assemblage, their physical properties mode of origin and mode of occurrence. Lithological mapping using aerial photos and satellite imagery, Digital analysis for lithological discrimination.

Unit – II: Remote Sensing applications to structural analysis
Bedding and simple dipping strata, Folds, Faults, Neovolcanic rift zone, Lineament, Unconformity, Structural mapping – structural analysis using aerial and satellite data, digital techniques for structural analysis.

Unit- III: Remote sensing application to geomorphology
Nature and type of landforms like denudational structural fluvial marine aeolian glacial and volcanic landforms their pattern configuration.

Unit – IV: Remote sensing application to geological investigation

Unit- V: Engineering & Sub-surface exploration & Disaster Asssement
Engineering geological Investigations, River valley projects, Dams and Reservoirs, Route location (high ways and Rail ways) canal and Pipe line alignments. Neotectionism, seismic Hazard and damage Assessment, Local ground condition, Disaster assessment, Volcanic and
Resistivity, aeromagnetic and electromagnetic survey for subsurface explorations.

Textbooks
1. Ravi P.Gupta, Remote sensing Geology-Springer Publisher, A1 Books Co.in.

GI 307 Digital Image Processing-I Practical

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam</th>
<th>Sessn. Marks</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hrs.</td>
<td>Marks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
</tbody>
</table>

Study of Digital Data Products – Characteristics of digital Images, Importing different satellite data products, converting hardcopy images to digital format
Radiometric Enhancements – LUT Stretch, Histogram equalization, Histogram matching, Image filtering
Geometric Enhancements – Geometric correction, Mosaic of images, Resolution merge
Functions & Operations on digital imagery

GI 308 Database Management Systems Practical

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam</th>
<th>Sessn. Marks</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hrs.</td>
<td>Marks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
</tbody>
</table>

Study features of a commercial RDBMS package such as ORACLE, MS Access, MYSQL & Structured Query Languages (SQL) used with the RDBMS. (Select two of RDMSS)
Laboratory exercises should include defining schemes for applications, creation of a database, writing SQL Queries, to retrieve information from the database, use of host Languages, interface with the embedded SQL, use of forms & report writing packages available with the chosen RDBMS product.
Some sample examples, which may be programmed, are given below:
Accounting package for a shop,
Database manager for a magazine agency or a newspaper agency,
Ticket booking for performances,
Preparing greeting cards & birthday cards,
Personal accounts- insurance, loans, mortgage payments, etc,
Doctor’s dairy & billing system,
Personal bank account
Class marks management, hostel accounting,
Video tape library,
History of cricket scores,
Cable TV transmission program manager,
Personal library.

GI 309 – Soft Skills

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam</th>
<th>Sessnl. Marks</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>100</td>
<td>100</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Communication:
- Importance of communication
- Non verbal communication
- Personal appearance
- Posture
- Gestures
- Facial expressions
- Eye contact
- Space distancing

Goal setting:
- Immediate, short term, long term,
- Smart goals, strategies to achieve goals

Time management:
- Types of time
- Identifying time wasters
- Time management skills

Leadership and team management:
- Qualities of a good leader
- Leadership styles
- Decision making
- Problem solving
- Negotiation skills

Group discussions:
- Purpose (Intellectual ability, creativity, approach to a problem, solving, tolerance, qualities of a leader)
- Group behavior, Analyzing performance

Job interviews:
- Identifying job openings
- Preparing resumes & CV
- Covering letter
- Interview (Opening, body-answer Q, close-ask Q),
- Types of questions

Reference books:
1. ‘Effective Technical Communications’ by Rizvi M. Ashraf, McGraw–Hill Publication
2. ‘Developing Communication Skills’ by Mohan Krishna & Meera Banerji, Macmillan
3. ‘Creative English for Communication’ by N.Krishnaswami & T.Sriraman, Macmillan
GI 310 Artificial Intelligence

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam</th>
<th>Sessnl. Marks</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td></td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
</tbody>
</table>

Unit – I
Introduction to Artificial Intelligence: overview of AI, definition of AI, relationship between AI systems and other computing systems, comparison between AI programming and other conventional programming. Sub areas of AI, key issues of AI research, AI problems, AI techniques, problem characteristics and production systems.

Unit – II
Knowledge representation: knowledge - general concepts, procedural vs. declarative knowledge, formal systems, symbolic representation- syntax and semantics of FOPL, Properties of w.f.f, clausal forms, resolution and unification, structural representation - semantic nets, conceptual graphs, conceptual dependencies, frames and scripts, probabilistic reasoning - Bayesian networks, non-monotonic reasoning - TMS.

Unit – III
AI languages: LISP-basic list manipulation functions, predicates, LISP constructs, I/O operations in LISP, iteration and recursion in LISP, prolog- syntax characters, predicates, rules, facts and goals in LISP variables, conjunctions, operators, back tracking, I/O operations and cut predicates

Unit – IV
Search and control strategies- example of search problems, uninformed search - BFS, DFS and comparisons, heuristic search - hill climbing, best - first search, constraints satisfaction and means end analysis, matching techniques.

Unit – V
Expert system – rule-based systems, backward vs. forward chaining, expert system shells, natural language processing - syntactic and semantic analysis, pragmatic processing, examples of NLP systems, goal state planning, non-linear planning and Hierarchical planning.

Text Books:
2. Introduction to Artificial Intelligence by O.W. Patterson- Prentice-Hall India
3. Artificial Intelligence for R. Schelkoff, McGraw-Hill

GI 311 Geographic Information Systems –I

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam</th>
<th>Sessnl. Marks</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td></td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
</tbody>
</table>

Unit – I

Unit – II
Data Files and Data bases- Data Types – Non-Spatial Data – Nominal, Ordinal, interval, ratio-Spatial Data – Points, Lines and Polygons / Area – File Types – Simple lists, Ordered Sequential Files – Indexed Files – Data Base – Functions, Data base structures – Hierarchical, Network, Relational.

Unit – III

Unit – IV

Unit – V
Continuous Surface Representation - Digital Elevation Models – Elevation data capture, Interpolation, DEM representation – Altitude matrix, TIN structure – DEM interpretation, Scale, Visualisation, Applications.

Text Books

GI 312 Elements of Cartography

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam</th>
<th>Sessnl.</th>
<th>Total</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hrs.</td>
<td>Marks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>-</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
</tbody>
</table>

Unit I
Maps: basic characteristics of maps; types of maps – classified by scale, function and subject matter.
Map scale; Representation of scale on maps; Determining the scale of a map;
Geographical coordinates - latitudes and longitudes; Properties of the graticule

Unit II
Map Projections - conformal, equivalent and azimuthal projections; Perspective projections, Non-perspective projections, Conventional projections
Conical projections; Cylindrical Projections; Zenithal projections; Space map projection

Unit III
Sources of Map data
Ground surveys: Principles of surveying; Measurement technology – traditional and automated survey systems
Remote sensing: aerial photography and satellite-based imaging;
Census: population enumerations, geocoding – entity focus and aggregation
Spatial sampling: sample size, sampling units, dispersion of sampling units, sample distribution

Unit IV
Cartographic design: Graphic elements of map design; Contrast, Figure-ground, colour and balance
Typography and lettering - type form, type size and type colour; Methods of lettering - cerographic technique, free-hand lettering, stick-up lettering, mechanical lettering; Guidelines for positioning of letters; lettering as a graphic symbol

Unit V
Relief representation on maps: Pictorial methods– hachuring, hill-shading; Quantitative methods – spot heights, Bench Marks, contours
Slope representation: Methods of expression of slopes – degrees, gradient percentage; finding slopes from contours – Wentworth’s method and Smith’s method
Block diagrams
Digital Cartography

Textbooks
2. ‘Elements of Cartography’ by A.H. Robinson and K.D. Sale, John Wiley & Sons

GI 313 Hydrology and Geophysics

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam</th>
<th>Sessnl. Marks</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hrs.</td>
<td>Marks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>-</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
</tbody>
</table>

Unit-I
Hydrological cycle, precipitation- measurements, raingauge by radar measurements, rain gauge net works, analysis of rainfall data, IDF curves, PMP curves; water balance-evaporation, transpiration, evapotranspiration, infiltration, soil moisture, field capacity; Runoff estimation- catchment characteristics, rainfall-runoff process, computing runoff by various empirical formulae.

Unit-II
Stream gauzing- site selection, gauzing techniques- notches, weirs, gauzing instruments; hydrographs- unit hydrograph, unit hydrographs for complex storms, Bernard’s distribution curve, instantaneous unit hydrograph, S-curve unit hydrograph, synthetic unit hydrographs.
Unit – III
Floods-estimation and control- definition and causes of floods, estimating design flood and flood flows; flood control measures- flood prepared ness, relief and recovery, flood plain zoning; flood fore casting techniques- flood routing, inflow-out flow correlation curves, time of travel and duration of the peak.

Unit – IV
Gravity methods- principles and elementary theory, gravitational potential, potential field equations, gravity of earth, figure of the earth, gravity reductions, densities of rocks and minerals,
Magnetic methods- principles and elementary theory; magnetism of the earth – nature of geomagnetic field, the main field, the external magnetic field, magnetism of rocks and minerals, magnetic susceptibilities of rocks and minerals;

Unit – V
Seismic methods- seismic theory- theory of elasticity, wave motion, seismic velocity; geometry of seismic wave paths, reflection wave paths, refraction wave paths; reflection field methods
Electrical methods- Electrical properties of rocks and minerals, electrical potentials, electrical conductivities, Self potential method-origin of potentials; Resistivity methods- elementary theory, single electrode, two electrode and line electrodes at surface, Equipment for resistivity field work, apparent resistivity, electrode spreads, field procedures, Interpretation. Geophysical Application to a) groundwater exploration, c) sub-soil exploration, e) bed rock investigation for civil structures.

Text Books:
4. Oil Exploration Techniques by Nettleton, L.L

References:
2. Irrigation and water power Engineering – B.C.Punmia& Pande B.B.Lal, Laxmi publications, New Delhi
3. Engineering Hydrology – E.M.Wilson, ELBS

GI 314 Digital Image Processing – II

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam Hrs.</th>
<th>Univ. Exam Marks</th>
<th>Sessnl. Marks</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>-</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>100</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

Unit -1

Unit -2

Unit -3
Classification – Supervised Classification – Maximum Likelihood, Minimum Distance, Parallelepiped, Other Supervised Classifications, Context Classifications, Non-parametric Classification – Linear Discrimination, Support Vector Classifier, Neural Network Approach, Unsupervised Classification – Delineation of Spectral Classes, Similarity metrics and clustering criteria, Iterative Optimization, Single pass Clustering Technique, Agglomerative Hierarchical Clustering, Clustering by Histogram Peak Selection, Classification Accuracy Assessment.

Unit -4
Interpretation of Hyper-spectral Image Data – Data Characteristics, Challenges to Data Interpretation, Data Calibration Techniques, Interpretation using Spectral Information, Hyperspectral Interpretation by Statistical Methods, Feature Reduction, Regularized Covariance Estimators.

Unit -5

Textbooks

GI 315-1 Geoinformatics for Ocean Resources Evaluation (Elective-II)

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam</th>
<th>Sessnl.</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>-</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
</tbody>
</table>

Unit – I:

Unit – II

Unit – III

Unit – IV

Unit – V
Marine GIS (MGIS) Ocean State Forecasting: Materials and methods for Ocean State Forecasting.

Textbooks

OR

GI 315-2 Mathematical Morphology in Image Processing

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam</th>
<th>Sessnl.</th>
<th>Total</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hrs.</td>
<td>Marks</td>
<td></td>
<td>Marks</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>-</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
</tbody>
</table>

Unit - I
Unit - II
Mathematical Morphology-Binary Mathematical Morphology-Erosion, Dilation, Opening, Closing Hit or Miss Transformation-Basic morphological algorithms-boundary extraction-region filling-Convex Hull-Thinning-Thickening-

Unit - III

Unit - IV
Binary and Grey level image segmentation-Skeletization by Zone of Influence Technique-Watershed segmentation technique- Segmentation of SPOT, RADARSAT, ERS SAR, and IRS data-Morphology based noise removal techniques for Microwave remote sensing data analysis-Granulometries for feature analysis

Unit - V
Exact dilations-Distance-transformations-Exact distance transforms through exact dilations-Vornoi Diagrams (Graph Theory)-Scale space skeletonization-Multi-scale morphological transformations-Shape Morphology for DEM analysis and terrain characterization

Textbooks
3. suggested Reading
4. Gonzalez, Digital Image Processing

GI 316 Geographic Information Systems -I Practical

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam</th>
<th>Sessnl.</th>
<th>Total</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>50</td>
<td>100</td>
<td>2</td>
</tr>
</tbody>
</table>

Classification of spatial data, layer and symbol concept using a GIS software, GIS project overview.
Exercise on digitizing entities like point, line and polygon data
Editing and adding labels, cleaning and generating coverage topology
Exercise on scanner and different scanner format and raster to vector conversion
Attribute data addition and query generation
Simple overlay analysis, map and report output

GI 317 Digital Image Processing– II Practical

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam</th>
<th>Sessnl.</th>
<th>Total</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>50</td>
<td>100</td>
<td>2</td>
</tr>
</tbody>
</table>
Multi Spectral Transformation of Image Data – Principle Component Analysis, Tasseled CAP, Calculation of indices
Fourier Transformation of Image Data – Fourier Transformation, Inverse Fourier Transformation, Discrete Fourier Transformation, Convolution
Classification - Supervised Classification, Unsupervised Classification.
Topographic Analysis – Creation of Slope map, Aspect map, Contour map, Viewshed analysis
Change Detection Analysis.

GI 318 – Industrial Training
(Summer Vacation)

Students will have to visit laboratories of government organizations like NRSA, ISRO, RRSSCs, etc., and reputed private institutes engaged in Geoinformatics-related projects for training and interaction during summer vacation.

GI 401 Digital Photogrammetry

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam</th>
<th>Sessnl.</th>
<th>Total</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>-</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>100</td>
<td>4</td>
</tr>
</tbody>
</table>

Unit –1

Unit – 2

Unit – 3

Unit – 4
DEM Quality assessment- Vertical & Horizontal Accuracy, Post Spacing, Vertical & Horizontal Datum, Projection and Coordinate system, DEM Editing, TIN/DEM Accuracy testing, Quality Control, TIN interpolation
DEM User Requirements – Accuracy and Cost Considerations – Technology-based cost comparisons, Area-based cost comparisons, and Accuracy-based cost comparisons.

Unit – 5
Text Books
GI 402 Microwave Remote Sensing

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam</th>
<th>Sessnl. Marks</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>-</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
</tbody>
</table>

Unit 1. Fundamentals.

Unit - II. Radar Remote Sensing.
Principles of Microwave Remote Sensing, Attenuation of Microwaves, Microwave Radiation, Surface scattering, Types of Antenna, Characteristics of Antenna.

Unit - III. Microwave Sensors.
Types of Microwave sensors, Real Aperture Radar (RAR), Synthetic Aperture Radar (SAR), Geometry of Radar Imagery, Microwave Radiometers, Microwave Scatterometer, Microwave Altimeter, Airborne and Space born Platforms and Sensors, SEASAT, SIR-A, SIR-B, JERS, ERS and EOS.

Unit - IV. Radar data & Data Interpretation.
Spatial Resolutions in Radar: Range resolution, Azimuth Resolution, Radar return and Image signature, System properties (Wavelength, Polarization and Incidence angle).
Terrain properties: Di-electric constant, Surface Roughness, Feature Orientation.
Forms of Radar return: Spectral Reflection, Corner Reflection or Diffused scattering.

Unit – V Applications.
Radar image characteristics, slant range distortion, Relief displacement, Lay-over, Foreshortening, Radar shadow, Parallax and Stereo capability, speckle. Interpretation of SLAR image, SAR Image, Atmospheric applications, Ocean and Land, SAR interferometry.

References:
5. Remote sensing note edited by Japan Association of Remote sensing @ JARS 1999.
6. Remote sensing and image interpretation. Lillesand Keifer
GI 403 Computer Graphics

Unit I
Overview of Graphics Systems.
Random-scan and raster scan monitors, Color CRT, Plasma panel displays, LCD Panels, Plotters, Film recorders, Graphics workstations, Display processors, Graphics software, Input/Output Devices, Touch panels, light pens, graphics tables.

Output primitives
Points and lines, DDA, Bresenham’s Line algorithm, parallel line algorithm, line function, circle generating algorithm, filled area primitives and pixel addressing.

Unit II
Two-Dimensional Geometric Transformations and viewing.
Use of homogeneous coordinate systems, Translation, scaling, rotation, Mirror reflection, Rotation about an arbitrary point, Zooming and panning, Rubber band methods, dragging, Parametric representation of a line segment, point-line and polygon clipping

Three-Dimensional Concepts and object representations
polygon surfaces, Curved lines and surfaces, Quadric surfaces, Blobby objects, Spline representations, Cubic Spline Interpolation methods, Bezier curves and surfaces.

Unit IV
Three-Dimensional Geometric and Modeling Transformations.
translation, Rotation, Scaling, Other Transformations, Composite transformations, Three dimensional transformation functions, modeling and coordinate transformations.

Three-Dimensional Viewing.
Viewing coordinates, projections, Clipping, Three dimensional viewing functions.

Visible-Surface Detection Methods.
Back face detection, Depth buffer method, Depth sorting method, Area subdivision method, Visibility detection functions.

Unit V
Illumination Models and Surface-Rendering Methods.
Halftone Patterns and dithering techniques, Polygon rendering methods, Environment mapping.

Color Models and Color Applications.
Properties of light, Intuitive color concepts, RGB, YIQ, CMY, HSV color models.

Text book:
2. Donald Hearn & m.Pauline baker
GI 404 – Urban Planning and Information Systems

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam Hrs.</th>
<th>Sessnl. Marks</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>-</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
</tbody>
</table>

Unit – I Introduction
Planning: background and principles; Need for planning; Urbanisation and its impact, Distribution of land use/land cover; Town planning in ancient India and new towns of India; Requirements and possible types of development of towns; Geoinformatics application in Urban Planning

Unit II Formulation of Plans
Objectives and contents; Regional plan; Perspective plan; Master plan; Development plan; Project (scheme) plan; Delineation of planning area; Trend analysis; Land suitability analysis; Land use planning; Zoning and principles of zoning; Building Bye-laws and its principles; Requirement of urban & regional planners; Remote sensing for different levels of development planning

Unit – III Housing
Importance of housing; Urban housing demand and production; Slums and squatters; Housing problem in India; National Housing policy; Site analysis - Layout design; Housing projects / Slum housing; Urban renewal projects; Urban infrastructure planning

Unit – IV Transportation planning
Classification of urban roads; Traffic surveys: speed, time, delay surveys; Use of speed, journey time and delay studies; Traffic volume; Origin Destination surveys; Parking surveys; Utility of remote sensing in traffic and transportation studies

Unit – V Urban Information System
Information system: Land; Housing; Transportation; Infrastructure; Trends in mapping using remote sensing, GIS and GPS; Database creation for Infrastructure development Decision support system for urban and regional management

Textbooks
1. Rangwala, Town Planning, Charotar Publishing House, Anand, India
2. Gallian B. Arthu and Simon Eisner, The Urban Pattern, City Planning and Design.

GI 405 Principles of Economics and Management

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Periods/week</th>
<th>Univ. Exam Hrs</th>
<th>Marks</th>
<th>Sessnl. Marks</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
</tbody>
</table>

1. **Nature of Economics** – Wealth, Welfare and Scarce Definitions of Economics; Micro and Macro Economics; Utility; Law of Diminishing Marginal Utility and limitations; Demand: Law of Demand, Elasticity of Demand, types of elasticity and factors determining price elasticity of Demand (8 Periods)
2. **Characteristics of Factors of Production** – Land, Labour and Capital; Laws of Returns: Law of Diminishing Returns, its limitations and importance (6 Periods)
3. **Conditions of Direct Market Structures** – Perfect Competition, Imperfect Competition, Monopolistic Competition, Monopoly, Oligopoly and Duopoly

(8 Periods)

4. **Forms of Business Organisations** – Salient features of sole proprietorship, Partnership, Joint Stock Company – Private limited companies, public enterprises and their types

(6 Periods)

5. **General Management** – Functions of management, evolution of management thought: Taylor’s scientific management and Henry Fayol’s principles of management; organization: types of organization structures

(6 Periods)

6. **Human resource management** – basic functions of HR manager: manpower planning, recruitment, selection, training; development, placement, compensation, and performance appraisal

(4 Periods)

7. **Production management** – Production planning and control, plant location, plant layout and types of layout; break-even analysis and its importance

(4 Periods)

8. **Financial management** – functions of financial management, types of capital, fixed and working capital and methods of raising finance; depreciation: straight line and diminishing balance methods

(4 Periods)

9. **Market management** – functions of marketing and distribution channels

(4 Periods)

10. **Entrepreneurship** – Entrepreneurial functions, entrepreneurial development: objectives, training, benefits; phases of installing a project

(4 Periods)

Textbooks

Reference Books

GI 406-1 Geoinformatics for Watershed Management (Elective-III)

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam</th>
<th>Sessnl.</th>
<th>Total</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>-</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
</tbody>
</table>

Unit-1 (Watershed Concept)

a) Issues in watershed management - land degradation, agricultural productivity, reservoirs sedimentation, depletion of bioresources, floods and droughts. Principles and approaches - principles of watershed management, different approaches in watershed management; Problem oriented approach, three dimensional approaches, integrated approach, steps in watershed management.

b) Watershed characteristics - size, shape physiography, slope, climate, drainage, landuse, vegetation, geology, soils, hydrology, hydrogeology, socio-economics. Linear aspects of channel systems - Aerial aspects of drainage basins.

Unit-2 (Land Management)

a) Survey, layout ; Preparation and Development. Contour demarcation, Bush clearance, updating, store picking and packing, leveling, shaping and consolidation, fencing, ploughing; soil and soil moisture conservation. Soil survey; conservation measures.
Contour techniques, ploughing, furrowing, trenching and staking, Gully control. Previous check dams. Brushwood dam, Rock fill dam, Gabion; Impervious check dams.

b) Land capability classification, land degradation and problem soils. Reclamation of saline soils, alkaline soils, saline soils, acidic soils, sulphide soils; sediment yield modeling and watershed prioritisation. The universal soil loss equation, sediment yield index method, statistical regression model, the European soil erosion model; Site selection from conservation measures.

Unit-3 (Water Management)

a) Surface water - Study of rainfall, estimation of run-off at micro catchments, stream gauging; Rainwater harvesting catchment, harvesting, harvesting structures, Ground water - exploration of canal command areas, potential areas; integrated water resources management, conjunctive use.

b) Dry land Agriculture - Runoff agriculture, micro catchment forming, irrigation with saline water, reusing water, conserving water, sprinkler irrigation, drip irrigation, pot irrigation, other systems, reducing crop land percolation losses, reducing transpiration losses, selection of water use efficiency crops.

Unit-4 (Integrated Management)

a) Agriculture - Crop husbandry, soil enrichment, inter, mixed and strip cropping, clopping pattern; sustainable agriculture, Hybrid and improved seeds; Biomass management, crop rotation, legumes, organic fertilization, spider farming, pastures and silvopastures; horticulture; tree culture; form forestry; bund utilization, boundary plantation; social forestry; Energy - Renewable resource water power, solar energy wind power; biomass, fire food synthetic fuels, burning of municipal / garbage, ocean tides and waves.

b) Appropriate Technology - Farm Equipment; Contour Methods; Check Dams, Water catchment and Harvesting, Kunds, Depression Harvesting, Harvesting below ground level, Harvesting below stream bed level, Ground water harvesting; low cost technology, Water Conservation, Utilization of Wasted Natural Resources, Novelties; Rural Technological Delivery Systems, Cultivating Wasted Lands, Tree Culture, Farm Forestry, Silvopastures, horticulture, Social Forestry, Afforestation, Wonder ways.

Unit-5 (Monitoring and Evaluation)

a) People's Part - Awareness, participation, Response; State and integrated approach, Appreciation of the concept, training, transfer of technology, Resource and Development, Agro-industrial infrastructure; Sustainable society, livestock, small animal farming, pisiculture, sericulture, Health and hygiene education, transport, cues.

Text Books and References

Program. University of Minnesota, College of Natural Resources, St. Paul Minnesota, U.S.A.

OR

GI 406-2 Geoinformatics for Coastal Zone Management (Elective-III)

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam</th>
<th>Sessnl.</th>
<th>Total</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hrs.</td>
<td>Marks</td>
<td>Marks</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>-</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
</tbody>
</table>

Unit I
Coastal and littoral zones – definitions and scope of study
Shore zone processes – waves, tides and currents
Coastal landforms;
River deltas: types of deltas and dynamics of the delta-fringe coasts
Coastal classification

Unit II
Coastal wetlands – Mangrove swamps, marshes, lagoons, tidal channels/creeks and their significance in coastal stability and economic importance
Continental margins – forms and processes; territorial waters and Exclusive Economic Zone
Sea level changes – factors involved; effects of sea level oscillations on coastal zones

Unit III
Coastal Hazards:
Storm surges and Tsunamis
Origin, propagation and run-up of tsunamis;
Tsunami impact – role of coastal topography and vegetation;
Geoinformatics in tsunami studies;
Coastal hazard preparedness – coastal protection, education and awareness of coastal communities

Unit IV
Human activity and coastal environment – deforestation, agriculture/aquaculture, pollution and coastal structures, and their effect on coastal zones
Coastal vegetation; shelter belts; coastal aquifers; freshwater-seawater interface
Morphology of Indian coasts

Unit V
Coastal zone management – concepts, models and information systems
Application of remote sensing in coastal zone studies
Role of Geographic Information Systems in coastal zone studies

Text books
2. Deltas, Coleman, J.M., Continuing education Publication Co.Inc. 1976
5. Introduction to Marine Geology and Geomorphology, King, C.A.M., Edward Arnold, 1974

References:
1. The role of Physical Processes in Mangrove Environments by Y. Mazda, E.Wolanski and P.V. Ridd, Terrapub, Tokyo, 2007

OR

GI 406-3 Geoinformatics for Forestry and Ecology (Elective-III)

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam</th>
<th>Sessnl.</th>
<th>Total</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hrs.</td>
<td>Marks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>-</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
</tbody>
</table>

Unit I. Forest Classifications
Natural vegetation of India and its classification: Concept of natural vegetation, forest / vegetation types of India and its classification.
Spectral properties of vegetation & other features: Spectral response from vegetation under different spectral regions, effects of phenological changes on spectral behaviour, spectral signatures etc.
Aerial photo interpretation for forestry and ecological information extraction: Qualitative characteristics for interpretation of forest types, specifications for aerial remote sensing data, forest mapping using aerial photographs.
Quantitative measurements from aerial photos: Measurements of crown diameter, crown counts and tree/stand height, volume/biomass and area estimation, data requirements, methods of data collection, processing, and complication techniques.

Unit – II Forest Mapping
Visual interpretation of Satellite imagery and Change Detection: Image elements for extraction of vegetation related information from space borne images, monitoring forest change and damage by visual interpretation.
Digital image processing for forest vegetation, mapping and change detection: Enhancements, spectral indices, data compressions techniques, Classification approach, Change detection techniques, Accuracy estimation criteria & methods.

Unit – III Microwave remote sensing and its applications in forestry
Concepts involved in interpretation of micro wave remote sensing data for forest and land use information extraction, merging multi spectral and microwave data, utility for volume/density classification.
Forest Canopy Density mapping: Mapping Canopy density of forest/vegetation types.
Forest disease detection & monitoring: Application of remote sensing data for disease detection & monitoring.

Unit IV. Forest Management (FM)
Forest fire assessment and risk zonation: Concepts and introduction about fire behaviour; Fire mapping possibilities using RS data; Identification of fire prone areas using RS and GIS based spactial modeling.
Forest resources information system: Concept of forest resources information system, compilation, integration and interpretation of various information for forest management.
Biodiversity conservation planning: Concept of biodiversity characterization at landscape level.

Unit V Forest ecology

Ecological principles and concepts: Ecological principles and concepts, Ecological approaches for evaluation of various ecosystems.

Structural analysis of vegetation: Spectral vegetation indices and enhancing; vegetation response in remote sensing data, Vegetation classification and mapping using RS data for ecological studies – terrestrial, wetland and Estuarine vegetation, Phytosociological analysis.

Functional analysis of vegetation and biomass estimation: Biological productivity components and their relationship with remote sensing data; Bio-productivity cycle; Terrestrial ecology; Biomass estimation.

Landscape ecology: Concepts of landscape ecology, parameters involved in landscape study, landscape analysis approaches etc.

Environmental impact assessment: Environmental policy and strategy; Environmental management system; Impact assessment; Vegetation monitoring and modeling landscape dynamics, Decision Support System.

Reference

10. Land Use and Forest Type Classification Proposed for Aerial Photo Interpretation by M. S. Tomar (1976).
GI 406-4 Geoinformatics for Soil and Agriculture Surveys (Elective-III)

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam</th>
<th>Sessnl.</th>
<th>Total</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>-</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>4</td>
</tr>
</tbody>
</table>

Unit I. Crop Inventory And Agricultural Water Management
Land Use / Land Cover: Information needs for Crop Inventory and agricultural water management, Digital and Visual techniques of land use mapping, Digital land use change detection, Accuracy assessment.
Crop Inventory: Importance of Remote Sensing in agriculture, Spectral characteristics of crops (Optical, Thermal & Microwave), Vegetative Indices, Principles of crop discrimination and acreage estimation, Principles and Approaches of Crop Yield Modeling using Remote Sensing, Crop condition, Stress assessment using temporal data. Canopy parameters retrieval (LAI, Biomass, Phenology etc.)
Agricultural Water Management: Remote sensing techniques for irrigated/un-irrigated crop inventory, irrigation water requirement, irrigation scheduling using remote sensing based crop water stress indices, ET estimation using remote sensing techniques, importance and assessment of soil moisture using remote sensing techniques (Optical, Thermal and Microwave), Definition and types of drought, Conventional and remote sensing based methods of agricultural drought assessment, (NADAM Project (National Agricultural Drought Assessment and Monitoring))

Unit II. Soil Survey, Mapping & Land Evaluation (SMLE)
Soil Profile Properties: Definition of soils, pedogenesis, Morphological characteristics of soil profile, genetic horizons and their nomenclature.

Unit III. Crop Resource Survey (CR)
Advances in Crop resource Survey: Hyperspectral Imaging for Crop growth monitoring Precision agriculture, Canopy reflectance modeling, radiation interaction with plant canopies, various radiant transfer models, sun and sensors geometry effects on reflectance.

Unit IV. Soil Conservation (SC)
Study of soil maps, USDA Soil Classification System, Interpretation of soil map for land capability, hydrological soil groups and soil suitability analysis (FAO Framework) for soil conservation planning.
Unit V. Soil Survey (SS)
Soil Classification: Soil forming factors, process: podzolization, laterization, salinization, gleization. Genesis of soil of different orders, epipedons, sub-surface diagnostic horizons, soil temperature and moisture regimes.
Categories of USDA soil classification system: orders, sub-orders, great groups, sub-groups, family and series. Examples of soil classification.
Soil Survey Applications: Arable farming, plantation, forestry, engineering, planning & development, irrigation.

Textbooks
4. Remote sensing Applications in agriculture by Eston & Clarke.

GI 407 Digital Photogrammetry Practical

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam</th>
<th>Sessnl.</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>50</td>
<td>100</td>
<td>2</td>
</tr>
</tbody>
</table>

Creation of Non-oriented Digital Stereo Models
Creation of Oriented Digital Stereo Models
Accuracy of Digital Stereo Models
Measurements of 3 Dimensional information
Collecting & Editing 3D GIS data
Aerial Triangulation
Triangulation with Satellite Imagery
Orthorectification
Automatic Digital Terrain Model Extraction
GI 407 Urban Planning and Information Systems Practical

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam Hrs.</th>
<th>Sessnl. Marks</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
</tbody>
</table>

Identification of urban objects on aerial photographs/satellite imagery of various scales
Urban land use/land cover classification & interpretation on aerial photographs/satellite imagery
- Visual interpretation
- Digital classification
Urban facility mapping through GPS and analysis
Urban environmental analysis
Database creation for urban area analysis – a case study

GI 409 Geographic Information Systems –II

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam Hrs.</th>
<th>Sessnl. Marks</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>-</td>
<td>5</td>
<td>3</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
</tbody>
</table>

Unit – I :Spatial Data Manipulation and Transformation

Unit – II: Spatial and Non-spatial Data Analysis – Raster and Vector
Display of raster data – Local operators – recoding, overlaying – Local Neighbourhood operators – Filtering, Slopes and Aspects – Extended Neighbourhood operators – Distance, Buffer zones, Visible area or Viewshed – Zonal operations – Zone identification, Zone area, Zone Perimeter, Distance from Zone boundary – Vector data – Polygon overlay, polygon statistics, Network Analysis – Non-spatial data analysis – Structured Query Language.

Unit – III: Spatial Modeling

Unit – IV: Data Quality and Error Data Propagation in GIS

Unit – V: Miscellaneous Topics
Multi Criteria Evaluation in GIS – Data capture using GPS for GIS FM studies – Object Oriented Database Models. Recent trends in GIS.

Text Books
GI 410 Geodesy and GPS

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam</th>
<th>Sessn. Marks</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>-</td>
<td>6</td>
<td>3</td>
<td>70</td>
<td>100</td>
<td>4</td>
</tr>
</tbody>
</table>

Unit I
Basic principles of Geodesy; History of Geodesy; Spherical Earth; Ellipsoidal Earth; Geoidal Earth; Geodetic Survey Systems; Horizontal Positioning – Determination of Astronomic position, Triangulation, Trilateration; Vertical Positioning.

Unit II
Fundamentals of Reference Systems and Frames: Geodetic and Cartesian coordinate system; principles of coordinate transformation; Datums: Horizontal and vertical datums – national, regional and local datums; Major datums and Indian datum; World Geodetic System (WGS) WGS84; tidal datums;

Unit III
Satellite Geodesy: definition; observational systems: Historical systems; Doppler; laser; radar altimetry;

Unit IV
Global Positioning System (GPS): Definition; GPS elements – space segment, user segment and control segment; Observation principles; phase measurement techniques; determining orthometric heights; GPS Error Sources and Error Handling Procedures: Atmospheric effects, clock and orbital errors, multipath, anti-spoofing and selective availability, etc; interference and jamming. Accuracy issues, GPS satellite navigation message; GPS time, fundamental and derived frequencies.

Unit V
GPS receivers: Multi-channel, sequential and multiplexing receivers;
GPS applications: Defense, civilian, Navigational and Geodetic applications; GPS-GIS integration
GPS applications in surveying, mapping, GIS and land navigation and precision farming; integration with other sensors: GPS in intelligent transportation and fleet management

Textbook
1. Physical Geodesy by Weikko A. Heiskanen and Helmet Moritz, W.H.Freeman and Company

GI 411 Data Mining and Neural Networks

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam</th>
<th>Sessnl.</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>-</td>
<td>6</td>
<td>3</td>
<td>70</td>
<td>100</td>
<td>4</td>
</tr>
</tbody>
</table>

Part A: Data Mining

Unit I
Introduction to Data Mining: importance and motivation of data mining, relational databases, data warehouses and data mining, translational databases, advanced database systems and advanced database application, data mining functionalities, pattern classification of data mining systems, major issues in data mining.
Data mining primitives, definition of data mining tasks, data mining query language, designing of graphical user interface based on data mining query language and architecture of data mining systems

Unit II
Classification and Clustering, classification and prediction concepts and issues regarding classification and prediction, classification by decision tree introduction, Bayesian classification, classification by back propagation, classification based on concepts from Association rule mining, K-nearest neighborhood classifiers, case based reasoning, genetic algorithms, roughest approach, fuzzy set approaches and prediction.
Cluster analysis: introduction to cluster analysis, types of data in cluster analysis, categorization of major clustering methods.

Unit III
Data mining applications: GIS and Data Mining – geospatial data mining for market intelligence; data mining for automated GIS data collection

Part B: Neural Networks

Unit IV

Unit V
Neural networks applications: neural network-based land transformation models; ANN and GIS in natural resource applications

Textbooks:
1. Introduction to Data Mining by A. Addisan Weeley Publication
2. Neural Networks and Fuzzy systems by B. Kosko, Prentice_hall India

References
1. Geospatial Data Mining for Market Intelligence by Paul Duke (http://www.tdan.com/view-articles/4921)
3. Using GIS artificial Neural networks and remote sensing to model urban change in the Minneapolis-St Paul and Detroit Metropolitan areas, by B.C. Pijanowski and B.A. Shellito (http://web.ics.purdue.edu/~bpijanow/ASPRS%202001%20pijan.pdf)
4. Integration of GIS and Artificial Neural Networks for Natural Resources Applications by Gregory L. Easson, and David J. Barr (http://gis.esri.com/library/userconf/proc96/TO150/PAP126/P126.HTM)

GI 412 Geographic Information Systems - II Practical

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam</th>
<th>Sessnl. Marks</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>50</td>
<td>100</td>
<td>2</td>
</tr>
</tbody>
</table>

1. Design a project based on cadastral/line drawing / map of a town/region for GIS project; identification of project problem.
2. Data input (spatial and attribute) editing and creating topology
3. Performing Geographic Analysis for the designed project
4. Presenting the results (map/report) of the analysis
 Viva presentation

GI 413 Project Work

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>PD</th>
<th>Total Pds</th>
<th>Univ. Exam</th>
<th>Sessnl. Marks</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>9</td>
<td>9</td>
<td>3</td>
<td>50</td>
<td>100</td>
<td>8</td>
</tr>
</tbody>
</table>

Each student has to take up a project work on a chosen field of interest within the scope of the degree in consultation with the teacher-guide allotted to him/her and submit a dissertation at the end of the stipulated time period, and face a viva-voce before a committee appointed for the purpose