ANDHRA UNIVERSITY
DEPARTMENT OF NUCLEAR PHYSICS

CURRICULUM FOR PRE – PH.D. AND M.PHIL. COURSES IN NUCLEAR PHYSICS
PROGRAMME EFFECTIVE FROM 2010-11 ADMITTED BATCH

The course work for Pre – Ph.D/M.Phil. candidates admitted in full-time, part-time and extra –mural categories from the academic year 2010-11 is as follows:

PAPER – I : Advances in Nuclear Physics and Data Analysis

PAPER – II : Special topic concerned with thesis including Research Methodology
(One of the following papers basing on Research Topic)

(i) Nuclear Reactions and Spectroscopy

(ii) Nuclear Techniques in Scientific Research

PAPER – III : Seminar on the topic of Research concerned.
PAPER – I : Advances in Nuclear Physics and Data analysis.

Module - I

Heavy ion physics:
Special factors - Coulomb excitation – Heavy ion scattering, grazing interactions, Compound nucleus and quasi molecule formation, Nuclei far from stability – New phenomenon exhibited by exotic nuclei.

Electromagnetic Transitions:

References:
1. Physics of nuclei and particles by Marmier and Sheldon Vol.II
2. Nuclear Structure Vol. I by De Shalit and Feshback

Module – II

Gamma –ray Spectroscopy with Germanium Detectors:
Response function, Methods of Continuum Reduction, Energy Calibration, Detection Efficiency, Radiation Damage, Neutron – induced contamination in pulse height spectrum.

References:
 Chapter 4 Section-IV(Pages 426-454)

Composite Germanium Detectors:
Clover detectors, Cluster detectors and Gamma-ray tracking Detectors.

References: (Following Papers and citations there)
Accelerator Physics:
High voltage Electrodynamic Accelerators, Industrial applications of electrostatic accelerators, Livingston chart, two bean accelerators and Wakefield accelerators

References:

Numerical methods in C Programming Language: Bisection method, Newton – Raphson method. Linear, Quadratic and Lagrange’s Interpolations, Difference tables, numerical integration, Simpson’s rule, Gaussian quadrature formula, Least square approximation of function, Liner regression, polynomial regression, fitting exponential and trigonometric functions.

References:
1. Computer programming in C by E.Balagurusamy.
2. C Language and Numerical Methods by C.Xavier.
PAPER – II: Experimental Nuclear Physics: Nuclear Reactions and Nuclear Spectroscopy.

Module - I

Nuclear Reactions:
1. Kinematics and Conservation Laws; Coulomb barrier, Q-value; Centre-of mass co-ordinate and Laboratory systems; Particle Identification; Cross section, Isospin, Optical Potential.
5. Fission: Spontaneous fission, Hill-wheeler Model, fusion – Fission.

References:
(1) Fundamentals of Nuclear Physics, By N.A.Jelley, 1990
 Chapter 5&Chapter 6
(2) Nuclear Physics, by H.S.Hans, New Age International (P) Ltd., 2001
 Chapters 9, 14 &17.

Module - II

Nuclear Spectroscopy:
1. Recent interests in Spectroscopy of Nuclei: Mass regions of Deformation, Types of deformation, Normal deformation, Highly deformed structures, super-deformation and Hyper-deformation. Regions of small deformations: Chiral Rotation, Magnetic rotation and Anti-magnetic rotation. Octupole and tetrahedral deformations.
2. Gamma-ray and electron spectroscopy: Measurement of life-time using Doppler shift attenuation and Recoil Distance Methods – Perturbed Angular Correlations – higher order effects in the measurement of internal conversion coefficients.
4. Nuclear reactions used to produce nuclei at high angular momentum: fusion evaporation, induced fission transfer reactions and deep – inelastic collisions. Estimation of cross sections and production of angular momenta.

References:
1. The electromagnetic interaction in nuclear Spectroscopy
 Edited by D.D.Hamilton(1975)North –Holland
2. F. Stephen – Reviews of Modern Physics (1975)43
Module – I

1. Experimental Techniques: Theory and Concept, Experimental arrangement and applications of the XRF, XRD, PIXE, ICPMS and INAA Techniques. Study of their sensitivity and limitations.

References: Atomic and Nuclear Analytical methods by H.R. Verma.

2. Mossbauer spectroscopy:
- Resonance fluorescence, Recoil energy, Natural broadening, Doppler’s broadening, the experiment of Mossbauer Effect, Classical and Quantum theories of Mossbauer Effect. Importance of Mossbauer Effect and its applications.
 (Ref: Solid state Physics by S.L. Gupta and V. Kumar; Solid state Physics by R.L. Singahal)

3. Magnetic Resonance:
- Nuclear magnetic Resonance, Line width, Hyperfine Splitting, Nuclear Quadrupole Resonance, Ferromagnetic Resonance, Antiferromagnetic Resonance, Electron paramagnetic resonance. (Ref: Introduction to Solid state Physics by C. Kittel; Solid state Physics by R.L. Singhal)

Module – II

1. Protection of personnel against nuclear radiation – radiation monitoring and film badge technique. Application of radioisotopes in medicine – study of the function of thyroid gland using I-131 isotope – Use of radioisotopes in medical field to trace out restricted blood flow regions in the body, to trace out of the distribution of Fe and Vitamin B-12 in different body organs.

3. Positron Emission Tomography (PET), Image analysis in brain SPECT and PET.

Ref: Nuclear Medicine By J.H. Thrall and Harvey V. Ziessman