M.Sc. Botany Semester - I

Core Paper 101	:	Biology and Diversity of Algae and Bryophytes
Core Paper 102	:	Biology and Diversity of Viruses, Bacteria and Fungi
Core Paper 103	:	Cell Biology
Core Paper 104	:	Cytology and Cytogenetics
Practicals		
Practical 101	:	Corresponding to papers 101 and 102
Practical 102	:	Corresponding to papers 103 and 104
		<u>Semester - II</u>
Theory		
Core Paper 201	:	Genetics
Core Paper 202	:	Molecular Biology
Core Paper 203	:	Biology and Diversity of Pteridophytes and Gymnosperms
Core Paper 204	:	Plant Cell, Tissue and Organ Culture
*Non-core Paper 205	:	To be opted by the student from among the papers offered by other Departments
Practicals		1
Practical 201	:	Corresponding to papers 201 and 202
Practical 202	:	Corresponding to papers 203 and 204 Semester - III
Theory		
Core Paper 301	:	Taxonomy of Angiosperms and Plant Resources Utilization and Conservation
Core Paper 302	:	Plant Development and Plant Reproduction
Core Paper 303	:	Plant Ecology
Core Paper 304	:	Plant Physiology
*Non-core Paper 305	:	To be opted by the student from among the papers offered by other Departments)
Practicals		
Practical 301	:	Corresponding to papers 301 and 302
Practical 302	:	Corresponding to papers 303 and 304 Semester - IV
Theory		
Core Paper 401	:	Genetic Engineering of Plants and Microbes
Core Paper 402	:	Evolution and Plant Breeding
Core Paper 403	:	Elective I
Core Paper 404	:	Elective II
Practicals		
Practical 401	:	Corresponding to papers 401 and 402
Practical 402	:	Corresponding to papers 403 and 404
		r the following two Non-core Papers to other Departments : icinal Plants and Ethnobotany
		ciples of Genetic Analysis

	Theory
S. No	
	SECTION A
1.	Criteria employed in classification of algae. Classification given by Fritsch, Bold and
	Wynne, Lee. Thallus organization, reproduction and life cycles in algae.
2.	Range of thallus structure, reproduction, life histories of Chlorophyceae with special
	reference to the genera: Chlamydomonas, Tetraspora, Volvox, Chlorella,
	Scenedesmus, Ulva, Enteromorpha, Cladophora, Fritschiella, Oedogonium,
	Spirogyra, Cosmarium, Caulerpa, Chara.
3.	Salient features of Protochlorophyta; Xanthophyta: Vaucheria. Bacillariophyta:
	Cyclotella, Navicula; Phaeophyta: Ectocarpus, Dictyota, Padina, Laminaria,
	Sargassum.
4.	Salient features of Rhodophyta: Gelidium, Gracilaria, Polysiphonia; Cyanophyta:
	Nostoc, Lyngbya, Spirulina.
	SECTION B
5.	Diversity of marine and fresh water algae in India. Economic importance of algae-
	single cell protein, pigments, lipids, and omega fatty acids. Algal blooms. Algal bio
	fertilizers. Cultivation of economically important seaweeds-Porphyra, Gracilaria,
	Gelidium. Mass culture of micro algae.
6.	Classification of Bryophytes given by Smith, Campbell. Ecological and economic
	importance of Bryophytes. Conduction in Bryophytes.
7.	Morphology, structure, reproduction and life history of Hepatocopsida:
	Marchantiales: Marchantia; Jungermaniales: Pellia, Porella; Anthocertopsida:
	Anthoceros.
8.	Morphology, structure, reproduction and life history of Bryopsida: Sphagnales:
	Sphagnum; Funariales: Funaria; Polytrichales: Polytrichum.

M.Sc. Botany – Semester I
Core Paper 101: BIOLOGY AND DIVERSITY OF ALGAE AND BRYOPHYTES
Theory

	Practical	
S. No	Exhibit/Experiment	
1.	Examination of vegetative and reproductive morphology of Chlorophyceae:	
	Chlamydomonas, Tetraspora, Volvox, Chlorella, Scenedesmus, Ulva, Enteromorpha,	
	Cladophora, Fritschiella, Oedogonium, Spirogyra, Cosmarium, Caulerpa, Chara.	
2.	Examination of vegetative and reproductive morphology of Bacillariophyceae:	

	Cyclotella, Navicula; Phaeophyceae: Ectocarpus, Dictyota, Padina, Laminaria,
	Sargassum.
3.	Examination of vegetative and reproductive morphology of Rhodophyceae:
	Gelidium, Gracilaria, Polysiphonia.
4.	Examination vegetative and reproductive morphology of Xanthophyceae: Vaucheria
	Cyanophyceae: Nostoc, Lyngbya, Spirulina.
5.	Field work to get acquaintance with the algae of Visakhapatnam coast and fresh
	water algae in and around Visakhapatnam.
6.	An examination of the external features and internal structure and reproductive organs
	of: Riccia, Targionia, Monoclea, Plagiochasma.
7.	An examination of the external features and internal structure and reproductive
	organs of the genera: Fimbriaria, Marchantia, Pellia, Porella.
8.	An examination of the external features and internal structure and reproductive
	organs of: Anthoceros, Notothylus, Andreaea, Funaria, Polytrichum.
	Reference Books
1.	Lee RW. 2007. Classification of Algae.
2.	Kumar HD. 1988. Introductory Phycology. Affiliated East West Press Pvt. Ltd.,
	New Delhi.
3.	Round FE. 1986. The Biology of Algae. Cambridge University Press, New York.
4.	Bold HC and Wyne MJ. 1978. Introduction to the Algae. Prentice-Hall, New
	Jersey.
5.	Presscot GW. 1969. The Algae- a Review. Houghton Mifflin Company, Boston.
6.	Morris I. 1967. An Introduction to the Algae. Cambridge University Press, UK.
7.	Chapman VJ.1962. The Algae. Macmillan and Co Ltd., London.
8.	Lewin RA. 1962. Physiology and Biochemistry of Algae. Academic Press, New
	York.
9.	Round FE. 1962. Ecology of Algae. Cambridge University Press, New York
10.	Smith GE (ed) 1950. Fresh Water Algae. Elsevier Science, USA.
11.	Fritsch FE.1945. The Structure and Reproduction of Algae Vols. 1& II.
	Cambridge University Press, New York.
11.	Chopra RN and Kumra PK. 1988. Biology of Bryophytes. New Age International (P) Ltd.
	Publishers, New Delhi.
12.	Parihar NS. 1991. Bryophyta. Central Book Depot, Allahabad.

13.	Puri P. 1980. Bryophytes. Atmaram and Sons, Delhi.
14.	Smith GM. 1955. Cryptogamic Botany Vol.II. Tata McGraw Hill Publishing Co.
	Ltd., New Delhi.
15.	Kashyap S. 1929. Liverworts of the Western Himalayas and Punjab Plains Part I
	and Part II. University of Panjab, Lahore, Pakistan.

M.Sc. Botany - Semester I Core Paper 102: BIOLOGY AND DIVERSITY OF BACTERIA, VIRUSES AND FUNGI Theory

	Theory
S. No	Unit
	SECTION A
1.	General account of archaebacteria, eubacteria and cyanobacteria. Classification of
	eubacteria. Ultrastructure, nutrition, reproduction and economic importance of
	bacteria.
2.	Morphology and chemical composition of Actinomycetes, Spirocetes, Rickettsiae
	and Mycoplasmas.
3.	Classification of viruses. Ultrastructure and chemistry of viruses. Replication and
	transmission of viruses. History, origin and evolution of plant viruses. Plant viral
	diseases.
4.	Microbial Ecology: quorum sensing, gentrification, phosphorous solubilization,
	nitrogen fixation.
	SECTION B
5.	Classification and phylogeny of fungi. Molecular aspects in classification. Thallus
	organization in fungi. Ultrastructure of fungal cell. Unicellular and multicellular
	organization. Cell wall composition. Fungal diseases in plants and humans.
6.	General account of Mastigomycotina, Zygomycotina, Ascomycotina,
	Basidiomycotina, Deuteromycotina.
7.	Reproduction in fungi: vegetative, asexual and sexual. Heterothallism,
	heterokaryosis and parasexuality. Nutrition in fungi: saprobic, biotrophic, and
	symbiotic.
8.	Fungi in industry: medicine, food, pest and weed management (biocontrol agents).
	Mushroom cultivation. Fermentation methods. Mycorrhiza.
	Duraction

Practical

S. No	Exhibits/ Experiments
1.	Tools of microbiology: Care and use of the microscope, Spectrophotometer, \boldsymbol{P}^{H}
	meter, Micrometer, Hemocytometer, Autoclave, Centrifuge, Biological safety

	achinete Inconduction needle and loop Incoheter Calence counter 9 Is 1''
	cabinets, Inoculation needle and loop, Incubator, Colony counter & Lyophilizer.
2.	Differential staining: Gram staining.
3.	Differential staining: Acid fast staining.
4.	Study of bacterial growth: To prepare the growth curve of bacteria.
5.	Study of cyanobacteria: Isolation and cultivation of cyanobacteria.
6.	Isolation of rhizobia from root nodules.
7.	Cultivation of viruses in embryonated eggs.
8.	Isolation of fungi by Petri plate exposure method.
9.	Morphological study of: Stemonitis, Saprolegnia, Mucor, Morchella, Aspergillus, Agaricus, Cyathus, Synchitrium, Helminthosporium.
10.	Symptomotology and anatomical study of some diseased specimens: white rust, powdery mildew, green ear of bajra, rust of wheat, rust of linseed, Tikka disease of ground nut, red rot of sugarcane, blast of rice, citrus canker, tobacco mosaic disease.
	References Books
1.	Kaursethi I and Surinder KW 2011. Text Book of Fungi and their Allies. Macmillan publishers, New Delhi, India.
2.	Ram Reddy S & Reddy SM 2007. Essentials of Virology. Scientific publishers, Jodhpur, India.
3.	Sharma K 2005. Manual of Microbiology Tools and Techniques. Ane Book, New Delhi, India.
4.	Matthew RH 2004. Plant virology. 4 th edition. Academic press an imprint of Elsevier, California, USA.
5.	Prescott et al. 2003. Microbiology. McGraw Hill Education, New York.
6.	Aneja KR 2003. Experiments in Microbiology, Plant pathology and Biotechnology. New Age International publishers, New Delhi.
7.	Verma HN 2003. Basics of plant Virology. IBH publishing co. Pvt. Ltd., New Delhi.

8.	Mehrotra KS and Aneja KR 2003. An Introduction to Mycology. New Age International Publishers, New Delhi.
9.	Sullia SB and Shantharam S 2001. General Microbiology. Oxford and IBH publishing Co. Pvt. Ltd, New Delhi.
10.	Reddy SM and Ram Reddy S 2000. Microbiology a Laboratory Manual . BSC Publishers and Distributors, Hyderabad.
11.	Flint SJ, Enquist LW, Krug RM, Racaniello VR, Skalka AM 2000. Principles of Virology, Molecular Biology, Pathogenesis and Control. ASM press, Washington DC.
12.	Rao AS 1999. Introduction to Microbiology. Prentice Hall of India Pvt. Ltd., Delhi.
13.	Alexopoulus CJ, Mims CW, Blackwell M 1996. Introductory Mycology . 4 th edition. Replika press, North Delhi.
14.	Paul S 1995. Bacteria in Biology, Biotechnology and Medicine . 5 th edition. John Wiley and son Ltd., UK.
15.	Pelczar, Chan and Krieg 1993. Microbiology. 5 th edition. McGraw Hill Education, New York.
16.	Stainer RT, Ingraham JL, Wheelis ML and Painter PR 1987. General Microbiology. 5 th Edition. Macmillan, London.
17.	Smith KM 1968. Plant viruses. Elsevier, New York.
18.	Rangaswamy G 1962. Bacterial Plant disease in India. Asia Publishing House, Bombay.

.

M.Sc. Botany - Semester I Core Paper–103: CELL BIOLOGY OF PLANTS

S. No	Unit
	SECTION A
1.	The cell theory. Origin and development of cell biology as a separate branch.
	Dimensions of size and weight: micron to angstrom, microgram to pictogram. Ultra
	structure and organization of prokaryotic and eukaryotic cells. Specialized cell types.
2.	Chemical foundation: macromolecules-structure, shape and information. Non-covalent
	interactions in relation to function of nucleic acids and proteins. Biochemical
	energetics: types of energy- thermal, electrical and radiant energy, interconvertability
	of energy. Laws of thermodynamics as applicable to biological systems.
3.	Cell wall:structure and functions, cell wall architecture, biogenesis and growth.
	Plasmodesmata: structure and function, plasmodesmata in comparison to gap
	junctions of animal cells. Plasma membrane: structure, models and functions. ATPases
	receptors, carriers, channels, pumps. Vacuole structure and function, vacuolar
	ATPases, transporters.
4.	Cytoskeleton: microtubules and microfilaments, their role in cell division and motility;
	intermediate filaments- role in providing strength. Labeled antibody technique for
	visualizing cytoskeleton.
	SECTION B
5.	Chloroplast and Mitochondria: structure and function, genome organization, nucleo-
	cytoplasmic interactions, RNA editing.
6.	Other organelles: structure and function- endoplasmic reticulum, Golgi apparatus
	lysosomes,, ribosomes, microbodies, peroxisomes.
7.	Tools in cell biology 1: microscopy-working principles of light microscopy,
	resolution power of microscope, different types of light microscopes, stains used.
	Image processing methods in microscopy. Scanning electron microscopy.
	Transmission electron microscopy- principle of working, preparation of specimens
	for electron microscopy -Fixing, sectioning, spreading molecules, negative staining,
	shadow casting, freeze fracture and freeze etching.
8.	Tools in cell biology II: subcellular fractionation-homogenization, principle of
	density gradient centrifugation. Spectroscopic techniques- principle and applications

of UV- visible, ESR. Spectrofluorimetry. Circular dichroism (CD). Nuclear magnetic resonance (NMR). Whole cell autoradiography. Radiolabeling techniques: properties of different radioisotopes used in biology, their detection and measurement, incorporation of radioisotopes in biological tissues and cells.

Practical

S. No	Exhibit/Experiment
1.	Electron microscopic picture of prokaryotic and eukaryotic cells.
2.	Images of cytoskeleton.
3.	Electron microscope pictures of chloroplast and mitochondria.
4.	Electron microscope pictures of endoplasmic reticulum, Golgi apparatus.
5.	Study of mitosis using acetocarmine.
6.	Isolation of mitochondria and the activity of its marker enzyme, succinate
	dehydrogenase (SDM).
7.	Fluorescence staining with FDA for cell viability and cell wall staining with
	calcofluor.
8.	Pictures of images of shadow casting, negative staining, freeze fracturing and
	freeze etching.
9.	Images of cells in flourescence, phase contrast and confocal microscopy, whole
	cell autoradiography.
10.	Establishing sucrose density gradients.

1.	Alberts B, Breyer D, Hopkin K, Johnson AD, Lewis J, Raff M, Roberts K and
	Watter P 2014. Essential Cell Biology. 4 th Edition. Garland publishers, New York.
2.	Sharp D, Ploppe G and Sikorski E 2014. Lewin's Cells. 3 rd Edition. Viva Books,
	New Delhi.
3.	Cooper GM, Hausman RE 2013. The Cell – A Molecular Approach. 6 th Edition.
	Sinauer Associates, Incorporated, USA.
4.	Karp G 2013. Cell and Molecular Biology – Concepts and Experiments. 7 th
	Edition. Wiley Global Education, USA
5.	McLennan A, Bates A, Turner P, White M 2013. Bios Instant Notes in Molecular
	Biology. 4 th Edition. Garland publishers, New York.
6.	Cowling G, Allen T 2011. The Cell. A very Short Introduction. Oxford University
	Press, USA.

7.	Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walker P 2007. Molecula
	Biology of the Cell. 5 th Edition. Garland publishers, New York.
8.	Schaffer SW 2007. Mitochondria: The Dynamic Organelle. 1 st Edition. Springer
	Verlag.
9.	Wilson J, Hunt T 2007. Molecular Biology of the Cell 5 th edition. The Problems
	Book. 2 nd Edition. Garland publishers, New York.
10.	Celis JE (ed) 2006. Cell Biology–A Laboratory Hand Book. 3 rd Edition. Elsevier,
	USA.
11.	Lodish H, Berk A, Kaiser CA, Kreiger M, Scott P M, Bretcher A, Ploegh H,
	Matsudaira P. 2004. Molecular Cell Biology. 5 th edition. W. H. Freemanand
	Company, New York.
12.	De DN 2000. Plant Cell Vacuoles. An Introduction. CSIRO Publication
	Collingwood, Australia.
13.	Krishna Murthy KV 2000. Methods in Cell Wall Cytochemistry. CPC Press,
	Boca Raton, Florida.
14.	Lodish, Berk A, Zipursky SL, Matsdaira P, Baltimore D and Darnell J 2000
	Molecular Ce11 Biology. 4 th Edition. W.H. Freeman and Co., New York.
15.	Alberts B, Bray D, Lewis J, Ralf M, Roberts K and Watson JD 1999.
	Molecular Biology of the Cell, Garland Publishing, New York.
16.	Kleinsmith LJ and Kish VM 1995. Principles of Cell and Molecular Biology.
	2 nd Edition. Harper Collins College Publishes, New York, USA.
17.	Avers CJ 1986. Molecular Cell Biology. Addison Wesley Publishing Company
	USA.

M.Sc. Botany – Semester I

Core Paper 104: CYTOLOGY AND CYTOGENETICS

S. No	Unit
	SECTION A
1.	Nucleus: structure of nuclear membrane and nuclear pore complex, nucleolus,
	ribosome biosynthesis.Chromatin: eu and heterochromatin, arrangement of
	chromatin. Molecular organization of chromatin: components, nucleosomes–
	composition and organization, 10 nm, 30 nm, solenoid, scaffolds. Chromosome
	structure: molecular organization of centromeres and telomeres. Types of
	chromosomes: lampbrush, polytene.
2.	Chromosome identification: karyotype analysis. Chromosome banding techniques-Q,
	C, G and R banding. Flowcytometry and confocal microscopy in karyotype analysis.
	Computer assisted karyotype analysis – chromosome microdissection and micro
	cloning. FISH and GISH techniques.
3.	Chromosomal structural aberrations: origin, meiosis and breeding behaviour of
	duplications, deficiencies, inversions and interchanges. Types of inversions.
	Robertsonian translocations- basic concept of complex translocation heterozygotes.
4.	Chromosomal numerical aberrations: classification of numerical aberrations.
	Aneuploids- trisomics (primary, secondary, tertiary), monsosomics and nullisomics -
	meiotic behavior. Eupolyploids – origin and production of auto -and allopolyploids,
	meiosis in autotetraploid. Genome of tobacco and wheat as examples of
	allopolyploids.
	SECTION B
5.	Nuclear DNA content: C-value paradox, hyperchromicity, cot curves and
	their significance. Molecular organization of eukaryotic nuclear genome: highly
	repeated, middle repeated and unique sequences.
6.	Cell cycle and its regulation: the G1, S, G2 and M phases. Synchronous and
	asynchronous cell divisions. The measurement of duration of different phases of cell
	cycle using a flow cytometer. Check points in cell cycle– role of cyclins and cyclin-
	dependent kinases in regulation of cell cycle.
7.	The different stages of mitosis and meiosis: description of the stages. Experimental
	control of cell division. Significance of meiosis.

8.	Apoptosis: mechanism and significance. Initiation of cancer at cellular level –
	proto oncogenes and oncogenes; retinoblastoma and E2F proteins.

Practical

S. No	Exhibit/ Experiment
1.	Photographs of interphase nucleus, 10 nm, 30nm and scaffolds. Electron microscope
	picture of metaphase chromosome, in-situ hybridization of chromosome spreads
	showing telomeres and centromeres. rRNA synthesis –christmas tree configuration.
2.	Pictures of lampbrush and polytene chromosomes.
3.	Photographs of chromosomes with different banding patterns. Identifying homologous
	chromosomes from the pictures.
4.	Preparation of karyotypes in Allium/ Aloe (with treated root tips). Construction of
	idograms from pictures of karyotypes.
5.	Photographs showing meiosis in structural and numerical aberrations.
6.	Meiosis in <i>Rheo discolor</i> showing complex translocation heterozygote.
7.	Preparation of slides from Allium floral buds for observation and identification of
	stages of meiosis.
8.	C value paradox chart and Britten and Kohne's Cot curves picture.

1.	Singh RJ. 2014. Plant Cytogenetics. 2 nd Edition.CRC Press, India.
2.	Pierce BA. 2013. Genetics: A Conceptual Approach. 5 th Edition. W. H. Freeman,
	California.
3.	William K, Cummings S, Spencer MR and Charlotte A. 2013. Essentials of
	Genetics. Pearson Books, Delhi.
4.	Hartwell L. 2011 Genetics: From Genes to Genomes, Study Guide and Solution
	Manual. 4 th Edition. Nero, McGraw Hill Publishing company, New York.
5.	Bass H and Birchler J. 2011. Plant cytogenetics: Genome structure and
	chromosome Function. Springer, New York.
6.	Ram M. 2010. Cytogenetics and Genetics. PHI Learning Pvt. Ltd., Delhi.
7.	Anthony J, Griffiths F, Wessig SR, Carroll SB and Doebley J. 2010. Introduction to
	genetic analysis. 10 th Edition. W. H. Freeman, California.
8.	Russel PJ. 2009. Genetics–A Molecular Approach. 3 rd Edition. Pearson Benjamin
	Cummings, San Francisco, USA.
9.	Roy D. 2009. Cytogenetics. Alfa Science International Ltd., UK.

10.	Brooker R. 2008. Genetics, Analysis and Principles. 3 rd edition. McGraw Hill
	Science.
11.	Gupta P.K .1995. Cytogenetics. Rastogi & Company, Meerut.
12.	Sybenga J. 1992. Cytogenetics in Plant Breeding. Springer London Ltd.
13.	David M. Prescott. 1988. Cells. Jones and Bartlett Publ. Boston.
14.	Swanson M and Young. 1982. Cytogenetics. Prentice Hall, India.
15.	Khush GS. 1973. Cytogenetics of Aneuploids. Academic Press, New York and
	London.
16.	Sybenga J. 1973. General Cytogenetics. North Holland and American Elsevier
	Publishing Co., New York.
17.	Burnham CR. 1962. Discussions in Cytogenetics. Burgess Publishing Co.,
	Minnesota.

M.Sc. Botany - Semester II Core Paper 201: GENETICS

S. No	Unit
	SECTION A
1.	Concept of genetic markers and their types. Mendel's experiments and theories,
	application of probability laws to Mendelian principles. Chi-square testing for
	goodness of fit. Penetrance and expressivity. Pleiotropism. Phenocopies.
	Codominance and incomplete dominance.
2.	Multiple allelism: interaction among multiple alleles, complementation test,
	pseudoalleles. Gene interaction and modified F_2 ratios in two gene interactions.
3.	Linkage and crossing over: identifying linkage from F_2 and test cross, recombination
	frequency and distance between genes. Linkage maps. Tetrad analysis-ordered and
	unordered tetrads.
4.	Recombination in prokaryotes: transformation, conjugation, transduction, sexduction.
	Mapping of genes in bacteria using transformation and conjugation (interrupted
	mating). Fine structure analysis of gene – Benzer's work.
	SECTION B
5.	Sex determination: chromosomal and genetic basis. Sex-linked inheritance. Sex
	influenced and sex limited characters. Polygenic inheritance: heritability and its
	measurement. QTL mapping.
6.	Extra chromosomal inheritance: inheritance of mitochondrial and chloroplast genes.
	Male sterility. Chloroplast mutations. Maternal inheritance.
7.	Nature of the eukaryotic gene: split gene with a promoter and terminator. Variant
	forms of eukaryotic gene – nested genes, overlapping genes, assembled genes,
	assorted genes. Multigene families- organization and significance. Transposable
	elements in pro- and eukaryotes: types, mechanism of transposition, significance of
	transposable elements.
8.	Mutations: types, causes and detection. Physical and chemical mutagens. Lethal,
	conditional, biochemical, loss of function, gain of function. Molecular basis of
	mutations. Spontaneity of mutations, site-directed mutagenesis. Recombination:
	molecular mechanism- role of rec A, B, C, D enzymes, Holliday model, site specific
	recombination.

Practical

S. No	Exhibit/Experiment/Assignment
1.	Assignment on Mendel's principles, chisquare test, proabability.
2.	Assignment on dominance relationships, multiple alleles and two gene interactions.
3.	Assignment on linkage and crossing over.

1.	Benajamin Pierce 2013. Genetics: A Conceptual Approach.5 th Edition.W.H.
	Freeman and Company.
1.	Lewin B. 2000. Gene VII. Oxford University Press, New York, USA.
2.	Snustad DP. and Simons MJ 2000. Principles of Genetics. 2 nd Edition. John Wiley
	and Sons Inc., USA.
3.	Atherly AG, Girton JR and McDonald JF. 1999. The Science of Genetics. Saunders
	College Publishing, Fort Worth, USA.
4.	Karp G. 1999. Cells and Molecular Biology: concepts and Experiments. Hohn
	Wiley and Sons Inc., USA.
5.	Hartl DL and Jones EW. 1998. Genetics: Principles and Analysis. 4th Edition. Jones
	and Bartlett Publishers, Massachusetts, USA.
6.	Malacinski GM and Freifelder D. 1998. Essentials of Molecular Biology. 3 rd Edition.
	Jones and Bartlet Publishers Inc., London.
7.	Russel PJ. 1998. Genetics. 5 th Edition. The Benjamin/ Cummings Publishing Company
	Inc., USA.
8.	Lewis R. 1997. Human Genetics: Concepts and Applications. 2 nd Edition. WCB
	McGraw Hill, USA.
9.	Griffiths RCL, Anthony JF, Miller JH and Suzuki DT. 1996. Genetic analysis. 6 th
	Edition. W. H. Freeman and Co., New York.

M.Sc. Botany - Semester II

Core Paper 202: MOLECULAR BIOLOGY OF PLANTS

S. No	Unit
	SECTION A
1.	Composition and structure of biomolecules: carbohydrates, lipids, proteins
	(Ramachandran plot) domains, motifs and folds. Nucleic acids- DNA structure, A, B
	and Z forms of DNA. Types of small RNAs: Si RNA, micro RNA, catalytic RNA.
2.	DNA replication: semi-conservative, semi-discontinuous- Okazaki fragments, uni
	and bi directional mode of replication. RNA priming, enzymes for DNA replication-
	gyrase, helicase, topoisomerases and polymerases, SSBs. Mechanism of DNA
	replication- in prokaryotes-rolling circle and theta mode of replication, in
	eukaryotes- multiple replicons. Fidelity of replication. Replication at ends of
	chromosomes. Extrachromosomal replicons. DNA damage and repair.
3.	RNA synthesis and processing: transcription process in prokaryotes and eukaryotes.
	Transcription factors. RNA processing- mRNA processing - spliceosome, capping
	and tailing, processing of tRNA and rRNA.
4.	Protein synthesis: structure of tRNA, aminoacylation of tRNA, aminoacyl tRNA
	synthetases. Ribosome as a translation factory. Genetic code- codon assignment,
	characteristics of genetic code. Mechanism of translation in prokaryotes and
	eukaryotes- initiation elongation and termination. Chemical proof reading during
	translation. Translation inhibitiors. Post translational modifications.
	SECTION B
5.	Protein sorting and targeting of proteins into nucleus, chloroplasts, mitochondria,
	vacuoles and peroxisomes. Protein trafficking through GERL system- signal
	peptide, signal recognition particle, vesicles.
6.	Signal transduction: signaling molecules, ligands and receptors. G protein coupled
	receptors. Receptor tyrosine kinases. MAP kinases. Second messengers, signal
	amplification, cAMPs. Ca-calmodulin pathway.
7.	Regulation of gene expression in prokaryotes: bacteria – Lac, arabinose, Tryp
	operons, positive and negative control. Regulation in viruses-lytic and lysogenic
	cycles.
8.	Regulation of gene expression in eukaryotes: cis and trans factors. Motifs of DNA

binding domains of trans factors-zinc fingers, leucine zippers, helix turn helix.
Temporal and spatial regulation. Role of chromatin in gene expression. DNA
methylation and gene imprinting. Gene silencing.

Practical

S. No	Exhibit/Experiment
1.	Isolation of DNA using CTAB method.
2.	Histochemical staining of carbohydrates, proteins and fats in the plant cells.
3.	Electrophoresis of seed proteins.
4.	Assignments on problems related to DNA structure, replication, transcription and translation
5.	Photographs depicting the content of theory

1.	Snustad P, Simmons MJ. 2003. Principles of Genetics. 3 rd Edition. John Wiley and
	Sons, Inc, USA.
2.	Buchaman BB, Gruissem, W and Jones R. 2000. Biochemistry and Molecular
	Biology of plants: American Societies of plant physiologists, John Wiley and Sons
	Ltd., Maryland, U.S.A.
3.	Lewin B. 2000. Genes IX, Oxford University Press, New York.
5.	Lodish BA, Zipursky SL, Matsdaira P, Baltimore D and Darnell J. 2000.
	Molecular Cell Biology. 4 th Edition. W.H. Freeman and Co., New York.
6.	Alberts B, Bray D, Lewis J, Ralf M, Roberts K and Watson JD.1999. Molecular
	Biology of the Cell. Garland publishing Inc., New York.
7.	Weaver RF. 1999. Molecular Biology. WCB /McGraw-Hill,.
8.	Shaw CH. 1998. Plant Molecular Biology. A practical approach, IRL Press,
	Oxford.
9.	Glick BR and Thompson JE. 1992. Methods in Plant Molecular Biology and
	Biotechnology, CRC Press, Boc Raton Florida.

M.Sc. Botany – Semester II

Core Paper 203: BIOLOGY AND DIVERSITY OF PTERIDOPHYTES AND GYMNOSPERMS Theory

S. No	Unit
SECTION A: Pteridophytes	
1.	Classification of Pteridophyta. Origin of Pteridophytes. Pteridophytes in comparison
	to Bryophytes and Gymnosperms. Distinguishing features of Pteridophyta.
	Economic importance of Pteridophytes.
2.	Morphology, anatomy and reproduction of Psilotum, Lycopodium, Selaginella,
	Isoetes, Equisetum, Ophioglossum, Osmunda, Gleichenia, Cyathea, Marselia,
	Adiantum, Salvinia and Azolla.
3.	General account of fossil pteridophytes-Psilopsida, Lycopsida, Sphenopsida and
	Pteridopsida.
4.	Evolution of stelar types in Pteridophytes. Heterospory and origin of seed habit.
	Evolution of the sporophyte.
	SECTION B: Gymnosperms
5.	The evolutionary time scale: eras, periods and epochs. General account of fossils.
	Types of fossil formations.
6.	Gymnosperms in comparison to ferns and seed plants. Classification of
	Gymnosperms and their distribution in India. Economic importance of
	Gymnosperms.
7.	General account of the families of Pteridospermales-Lyginopteridaceae,
	Meduloisaceae, Caytoniaceae; Bennettitales-Cycadeodiaceae; Pentoxylales -
	Pentoxylaceae; Cordaitales-Cordaitaceae.
8.	Structure and reproduction in living Gymnospermsof Cycadopsida, Coniferopsida
	and Gnetopsida.
	Practical

S. No	Exhibit/Experiment
1.	Examination of the external features, anatomy and reproductive structures of
	Psilotum, Lycopodium, Selaginella, Isoetes and Equisetum.
2.	Examination of the external features, anatomy and reproductive structures of
	Ophioglosum, Osmunda, Gleichenla, Cyathea, Marselia, Adiantum, Salvinla and

	Azolla.
3.	Observations of the slides of the following fossil plants-Rhynia, Lepidodendron,
	Lepidocarpon, Miadesmia, and Sphenophyllum.
4.	Observations of the slides fossil Pteridophytes: Calamites, Calamostachys,
	Zygopters and Etapteris.
5.	Examination of the external features, anatomy and reproductive structures of
	Ginkgo, Pinus, Cupressus and Cryptomeria.
6.	Examination of the external features, anatomy and reproductive structures of
	Araucaria, Ephedra and Gnetum.
7.	Study of fossil gymnosperms from prepared slides: Lyginopteris, Lagenostoma and
	Medullosa.
8.	Study of fossil gymnosperms from prepared slides: Triganocarpus, Conostoma,
	Heterangium, Cordaites.

1.	Saxena P and Pathak C. 2012. A Text Book of Pteridophyta., Wisdom Press, New
	Delhi.
2.	Sharma OP.2006. Pteridophyta. MacMillan India Ltd., New Delhi.
3.	Parihar NS. 1996. Biology and Morphology of Pteridophytes. Central Book
	Depot, Allahabad.
4.	Smith GM. 1995. Cryptogamic Botany. Vol. II. McGraw Hill Book Company,
	New York.
5.	Sporne KR. 1962. The Morphology of Pteridophytes. Hutchinson University
	Library, London.
6.	Evans AJ. 1936. Morphology of Vascular Plants (Lower groups). McGraw Hill
	Book Company, New York.
7.	Biswas C and Johri BM. 1997. The Gymnosperms. Narosa Publishing House, New
	Delhi.
8.	Bhatnagar SP and Moitra A. 1996. Gymnosperms. New Age International Private
	Limited, New Delhi.
9.	Sharma OP. 1996. Gymnosperms. Pragati Prakashan, Meerut.
11.	Stewart WN and Rothwell GW. 1993. Paleobotany and the Evolution of Plants.
	Cambridge University Press, USA.
12.	Singh H. 1978. Embryology of Gymnosperms. Gebrudev Bortraeger, Berlin.

13.	Arnold CA. 1974. An introduction to Paleobotany. McGraw Hill Book Co., Inc.,
	New York.
14.	Sporne KR. 1967. The Morphology of Gymnosperms. Hutchinson University
	Library, London.
15.	Chamberlain CJ. 1935. Gymnosperms structure and evolution. University of
	Chicago Press, USA.

M.Sc. Botany - Semester II

Core Paper 204: PLANT CELL, TISSUE AND ORGAN CULTURE

Theory

S. No	Unit
	SECTION A
1.	Plant cell and tissue culture: introduction, history, scope. Basic concepts of tissue of
	culture: tissue culture cycle, types of cultures. Concept of cellular differentiation,
	totipotency.
2.	Culture media: composition and effects of media components, phytohormones -
	effects in tissue culture. Sterilization methods.
3.	Pathways of regeneration – biochemical and molecular aspects of tissue culture cycle.
4.	Technique and applications of cryopreservation and germplasm storage.
	SECTION B
5.	Organogenesis and adventitious embryogenesis. Fundamental aspects of
	morphogenesis, somatic embryogenesis. Methods of androgenic and gynogenic
	haploid production-dihaploids and application in agriculture. Embryo rescue.
6.	Cell culture: establishment, plating efficiency, induction and selection of mutants.
	Free cell cultures: production of secondary metabolites/natural products.
7.	Somatic hybridization: protoplast isolation, fusion and culture, hybrid selection and
	regeneration, possibilities, achievements, limitations, merits and demerits . Cybrids.
	Protoplasts in genetic transformation.
8.	Applications of plant tissue culture: clonal propagation, artificial seeds and its
	applications, somaclonal variation and its applications.

Practical

S. No	Exhibit/Experiment
1.	General out lay of plant tissue culture laboratory.
2.	Preparation of media.
3.	Callus induction – carrot.
4.	Clonal propagation through meristem cultures.
5.	Embryo culture – groundnut.
6.	Anther culture – <i>Datura</i> /tobacco.
7.	Establishment of cell cultures and determination of growth pattern.
8.	Determination of plating efficiency of cell cultures.

9.	Protoplast isolation and culture.
10.	Protoplast fusion.
11.	Observation of different developmental stages of somatic embryo in embryogenic callus.
12.	Preparation of artificial seeds.

1.	Collin HA and Edwards S. 1998. Plant Cell Culture. Bioscientific Publishers,
1.	
	Oxford, UK.
2.	Callow JA, Ford-Lloyd BV and Newbury HJ. 1997. Biotechnology and Plant
	Genetic Resources: Conservation and Use. CAB International, UK.
3.	Raghavan V. 1997. Molecular Biology of Flowering plants. Cambridge
	University press, New York, USA.
4.	Bhojwani SS and Razdan MK. 1996. Plant tissue culture: Theory and Practice.
	(A revised edition). Elsevier Science Publishers, New York, USA.
5.	Jain SM, Sopory SK and Velleux RE. 1996. In Vitro Haploid production in
	Higher Plants. Volumes 1-5. Fundamental aspects and Methods Kluwer Academic
	Publishers, Dordrecht, Netherlands.
6.	Vasil IK and Thorpe TA. 1994. Plant Cell and Tissue Culture. Kluwer Academic
	Publishers, Dordrecht, Netherlands.
7.	Bhojwani SS. 1990. Plant Tissue Culture: Applications and Limitations.
	Elsevier Science Publishers, New York, USA.
8.	Raghavan V. 1986. Embryogenesis in Angiosperms: A Developmental and
	Experimental Study. Cambridge University Press, New York, USA.
9.	Kartha KK. 1985. Cryopreservation of Plant Cells and Organs. CRC Press,
	Boca Raton, Florida, USA.

M.Sc. - Semester II

Non-core Paper Offered by the Department of Botany

Paper 205: MEDICINAL PLANTS AND ETHNOBOTANY

S.No	Unit
	SECTION A
1.	Ethnobotany: Introduction, concept, scope and objectives.
2.	Ethnic groups and Ethnobotany: Major and minor ethnic groups of Andhra Pradesh
	and their life styles. Forest Vs. Ethnic groups.
3.	Methodology of Ethnobotanical studies:
	(a) Field work
	(b) Herbarium
	(c) Ancient literature
	(d) Archaeological findings
	(e) Temples and sacred places.
	(f) Protocols.
4.	Plants and Tribal medicine: Significance of the following plants in Ethno-medical
	practices (along with a brief note on their habitat and morphology):
	(a) Curculigo orchioides
	(b) Costus speciosus
	(c) Gloriosa superba
	(d) Butea monosperma
	(e) Wrightia tinctoria
	(f) Pongamia pinnata.
	SECTION B
5.	Medico-ethnobotanical research in Andhra Pradesh.
6.	Different systems of indigenous medicine (Traditional medicine, Ayurveda, Siddha,
	Unani), Homeopathy and Allopathy. Role of Phytomedicine in modern systems of
	medicine.
7.	Classification of drugs; analytical methods - drug adulteration, drug evaluation,
	anatomical and phytochemical analysis of crude drugs; preliminary screening,
	fractionation and separation of different groups of biodynamic compounds and
	biological evaluation.

8.	Phytopharmaceuticals: Drugs of alkaloids, coumarins, volatile oils, tannins, resins and
	gums. Natural pesticides, antibiotics, allergens and poisonous plants. Economic
	potential of phytomedicine; potential drug yielding plants and their marketing
	avenues. IPR and patenting of active principles.
	Reference Books
1.	Cotton C.M. 1997. Ethnobotany – Principles and applications. John Wiley and
	sons
	– Chichester.
2.	Faulks, P.J. 1958. An introduction to Ethnobotany. Moredale Pub. Ltd., London.
3.	Jain S.K., (ed.) 1981 Glimpses of Indian Ethnobotany. Oxford and I B.H., New
	Delhi.
4.	Jain S.K., (ed.) 1989. Methods and approaches in ethnobotany. Society of
	ethnobotanists, Lucknow, India.
5.	Jain S.K., 1990. Contributions of Indian Ethnobotany. Scientific publishers,
	Jodhpur.
6.	Jain S.K., 1995 Manual of Ethnobotany. Scientific Publishers, Jodhpur.
7.	Kokate, C.K., A.P. Purohit & S.P. Gokhale, 2000. Pharmacognosy. Nirali Prakasan
8.	Martin, G.J 1996. Ethnobotany, A methods manual. Chapman & Hall, London.
9.	Ramachandran, S.P. 1991, Recent Advances in Medicinal Aromatic and Spice
	Crops.
10.	Rama Rao, N and A.N. Henry (1996). The Ethnobotany of Eastern Ghats in
	Andhra Pradesh, India. Botanical Survey of India, Howrah.
11.	Schultes, R.E. 1995, Ethnobotany, Chapman and Hall.
12.	Trease, G.E. and W.C. Evans, 2002. Pharmacognosy. Saunders, New York.

M.Sc. Botany – Semester III Core Paper 301: TAXONOMY OF ANGIOSPERMS AND PLANT RESOURCES UTILIZATION AND CONSERVATION

S. No	Unit		
	SECTION A		
1.	Origin and evolution of Angiosperms. Fossil Angiosperms. Taxonomy and Systematics. Concepts of species. Taxonomic hierarchy - species, genus, family and other categories. Principles used in assessing relationship and delimitation of taxa and attribution of rank. Plant identification. Plant nomenclature – Binomial nomnclature, ICBN. Plant collection and documentation.		
2.	Brief analysis of the features and evolutionary tendencies noticed in the following groups: Ranales, Rosales, Centrospermae, Tubiflorae, Amentiferae, Helobiales, Liliflorae and Glumiflorae.		
3.	Taxonomic evidences: embryology, cytology and phytochemistry. Taxonomic tools: herbaria, floras, botanical gardens, biochemicaland molecular techniques, computers and GIS (Geo Information Systems). Cladistics in taxonomy. Numerical taxonomy and sero taxonomy.		
4.	Systems of Angiosperm classification: Phenetic versus Phylogenetic system. Relative merits and demerits of major systems of classification: Takhtajan, Cronquist and Thorne. Basic concepts of Molecular Systematics: Gene sequencing, Restriction site analysis, Allozymes etc., Angiosperm Phylogeny Group (APG III) classification system, Relevance of Taxonomy to conservation, sustainable utilization of bioresources and ecosystem research.		
	SECTION B		
5.	World centres of primary diversity of domesticated plants. The Indo-Burmese Centre, Plant Introductions and Secondary centers. Plant explorations. Origin of agriculture.		
6.	Origin, evolution, Botany, cultivation and uses of :		

	1. Food Crops	:	Wheat, Rice
	2. Forage Crops :		Sorghum, Red gram
	3. Fibre Crops	:	Cotton, Jute
	4. Oil yielding crops	:	Groundnut, Coconut
	5. Medicinal and aromatic crops	8 :	Catharanthus, Withania, Cymbopogan
7.		odive	onsequences. Ethnobotany: Introduction, ersity: Concept, status in India, utilization sity.
8.		wetl	For conservation, <i>In-situ</i> conservation: ands, mangroves, <i>Ex-situ</i> conservation: BSI, ICAR and CSIR.

	Exhibits/ Experiments/ Suggested Laboratory Exercises	
	Taxonomy	
1.	Description of a specimen from representative and locally available families.	
2.	Description of a species based on various specimens to study intraspecific variation: A collective exercise.	
3.	Description of various species of a genus: location of key character and preparation of keys at genetic level.	
4.	Location of key characters and use of keys at family level.	
5.	Field trips within and around the campus; compilation of field notes and preparation of herbarium sheets of such plants, wild or cultivated, as are abundant.	
6.	Training in using floras and herbaria for identification of specimens described in the class.	
7.	Demonstration of the utility of secondary metabolites in the taxonomy of some appropriate genera.	
8.	Comparison of different species of a genus and different genera of a family to calculate similarity coefficients and preparations of denodrograms.	

	Plant Resources Utilization and Conservation		
1.	Laboratory work:		
	1. Food crops : Wheat, Rice		
	2. Forage/fodder crops : Sorghum, Red gram		
	3. Fiber crops : Cotton, Jute		
	4. Oil yielding : Groundnut, Coconut		
	5. Medicinal and Aromatic plants : Catharanthus, Withania, Cymbopogan		
2.	Scientific visits:		
	The students should be taken to one of the following:		
	A protected areas or Biosphere reserve or national park or sanctuary.		
	A wetland.		
	A mangrove.		
	NBPGR (National Bureau of Plant Genetic Resources – New Delhi).		
	BSI.		
	CSIR Laboratory.		
	FRI.		
	Tropical Botanical Gardens.		

	Taxonomy of Angiosperms	
1.	Mondal AK. 2011. Advanced Plant Taxonomy. New Central Book Agency Pvt.	
	Ltd., Kolkata.	
2.	Simpson MG. 2006. Plant Systematics. Elsevier Academic Press, California,	
	USA.	
3.	Nordenstam BEI, Lazily G and Kassas M. 2000. Plant systematic for 2 nd Century.	
	Portland Press Ltd., London.	
4.	Takhtajan AL. 1997. Diversity and classification of Flowering Plants. Columbia	
	University Press, New York.	
5.	Zomlefer WB. 1994. A Guide to flowering plant families. University of	
	California Press, USA.	
6.	Woodland DW. 1991. Contemporary Plant Systematics. Prentice Hall,	
	New Jersey.	
7.	Stace CA. 1989. Plant Taxonomy and Biosystematics .2 nd Edition. Edward	
	Arnold Ltd., London.	

8.	Jones SB Jr. and Luchsinger AE. 1986. Plant Systematics. 2 nd Edition. McGraw
0.	
	Hill Book Co., New York.
9.	Radford AE. 1986. Fundamentals of Plant Systamatics. Harper and Row
	Publications, USA.
10.	Heywood VH and Moore DM. 1984. Current concepts in Plant Taxonomy.
	Academic Press, London.
11.	Davis PH and Heywoos VH. 1973. Principles of Angiosperms Taxonomy. Robert
	E Kreiger Pub. Co., New York.
12.	Harrison HJ. 1971. New concepts in Flowering Plant Taxonomy. Hieman
	Educational Books Ltd., London.
13.	Jones AD and Wilbins AD. 1971. Variations and Adaptations in Plant species.
	Hiemen and Co., Educational Books Ltd., London.
14.	Grant V. 1971. Plant Biosystematics. Academic press, London.
15.	Solbrig OT. 1970. Principles and Methods of Plant Biosystamatics. Macmillan,
	London.
16.	Heslop-Harrison J. 1967. Plant Taxonomy. English language Books Soc. and
	Edward Arnold Pub. Ltd., U.K.
	Plant Resource Utilization And Conservation
17.	Sambamurthy AVSS and Subramanyam NS. 2000. Economic Botany of Crop
	Plants. Asiatech Publishers, Inc., New Delhi.
18.	Conway G. 1999. The Doubly Green Revolution: Food for All in the 21st
	Century. Comstock Publishing Associates, New York.
19.	Pinstrup – Anderson P. et al. 1999. World Food Prospects: Critical Issues for
	the Early 21st Century. International Food Policy Research Institute, Washington
	DC, USA.
20.	Kocchar SL. 1998. Economic Botany of the Tropics. 2nd Edition. Mac Millan
	India Ltd., Delhi.
21.	Plant Wealth of India 1997. Special Issue of Proceedings Indian National Science
	Academy B-63.
22.	Sharma OP. 1996. Hills Economic Botany. (Late Dr. A.F. Hill, adapted by O.P.
	Sharms). Tata McGraw Hill Co., Ltd., New Delhi.
23.	Frankel OH, Brown AHD and Burdon JJ. 1995. The conservation of Plant

24.	Paroda RS and Arora RK. 1991. Plant Genetic Resources Conservation and
	Management. IPGRI (Publication) South Asia Office, C/o. NBPGR Pusa Campus,
	New Delhi.
25.	Swaminathan MS and Kocchar SL (ed). 1989. Plants and Society. Mac Millan
	Publication Ltd., London.
26.	Thakur RS, Puri HS and Hussain A. 1989. Major Medicinal Plants of India.
	Central Institute of Medicinal and Aromatic Plants. CSIR, Lucknow.
27.	Council of Scientific & Industrial Research 1986. The useful plants of India.
	Publications and Information Directorate. CSIR, New Delhi.
28.	Baker HG. 1978. Plants and Civilization . 3 rd Edition. C.A. Wadsworth, Belmont.
29.	Chrispeels MJ and Sadava D. 1977. Plants, Food and People. W.H. Freeman and
	Co., San Francisco, USA.
30.	Schery RW. 1972. Plants for Man . 2 nd Edition. Englewood Cliffs, New Jersey.
31.	Raw materials I - XII Revised Vol. I-III (1985-1992) supplement (2000).

M.Sc. Botany – Semester III Core Paper 302: PLANT DEVELOPMENT AND REPRODUCTION

S. No	Unit		
	SECTION A		
1.	Simple and complex tissues. Epidermis – stomata, trichomes. Secretory cells and tissues. Vascular tissue development: development and structure of the primary xylem, primary phloem, secondary xylem, secondary phloem. Root shoot transition.		
2.	Shoot development: organization of the shoot apical meristem (SAM), cytological and molecular analysis of SAM. Leaf growth and differentiation: differentiation of epidermis and mesophyll. Structure of foliage leaves and modified leaves. Phyllotaxy.		
3.	Root development: organization of root apical meristem (RAM), cell fates and lineages, tissue differentiation. Lateral roots, root hairs, root microbe interactions. Cambium–structure, cell types, development of vascular cambium, cork cambium–structure of its derivatives, bark. Anomalous secondary growth in dicot and monocot stems.		
4.	Floral development taking the examples of homeotic mutants in <i>Arabidopsis</i> and <i>Antirrhinum</i> .		
	SECTION B		
5.	Male gametophyte: structure of anther, microsporagenesis, types and role of tapetum, pollen development, sperm dimorphism, pollen embryo sacs and compound pollen grains. Pollen allergy.		
6.	Female gametophyte: types of ovule, development of ovule, megasporogenesis, types of embryo sacs, organisation of the embryo sac – ultra structure of the embryo sac cells.		
7.	Pollination: mechanisms and vectors. Pollen-pistil interaction-structure of the pistil, pollen-stigma interaction. Self-incompatibility: sporophytic, gametophytic, different methods to overcome self-incompatibility. Fertilization: pollen germination, pollen		

	tube growth and guidance, entry of pollen tube into the embryo sac, pollen tube
	discharge, syngamy and triple fusion, polyspermy and hetero fertilization.
8.	Post-fertilization events: endosperm- development, types ,functions, endosperm -
	embryo relationship. Embryo development-Johanson and Soueges systems; Types.
	polyembryony; apomixis; parthenocarpy. Storage proteins of endosperm and
	embryo- LEA proteins. Seed dormancy, overcoming seed dormancy.

Practical

	Exhibits/ Experiments/ Suggested Laboratory Exercises		
	Plant Development		
1.	Microscopic examination of transverse sections of leaves such as <u>Nerium</u> and maize to understand the internal structure of leaf tissues and trichomes, glands etc. Study of the C_3 and C_4 anatomy of plants		
2.	Study of epidermal peels of different kinds of leaves to study the development and nature stomata, computing stomatal index.		
3.	Study of elements of wood from macerations and sections taken in three planes T.S., T.L.S. and R.L.S		
4.	Study of the anomalous structure of the stems of Aristolochia, Achyranthes, Bignonia, Boerhaavia, Leptadenia and Dracaena.		
	Plant Reproduction		
1.	Study of microsporogenesis and gametogenesis in sections of anthers.		
2.	Tests for pollen viability using stains and <i>in-vitro</i> germination.		
3.	Embryo sac development through examination of permanent, stained serial sections.		
4.	Study of nuclear and cellular endosperm through dissections and staining.		
5.	Isolation of different stages of embryo development from suitable seeds.		

Plant Development	
1.	Pullaiah T, Naidu KC, Lakshminarayana K and Hanumantha Rao B. 2007. Plant
	Development. Regency Publications, New Delhi.
2.	Fosket DE. 2004. Plant Growth and Development. A Molecular approach.

	Academic Press, San Diego.
3.	Howell SH. 1998. Molecular Genetics of Plant Development. Cambridge
	University Press,
4.	Waisel Y, Eshel A and Kafkaki V (ed) 1996. Plant Roots: the Hidden Hall. 2 nd
	edition. Marcel Dekker, New York.
5.	Bailey JD and Black M. 1994. Seeds: Physiology of development and
	Germination. Plenum Press, New York.
6.	Salisbury FB and Ross CW. 1992. Plant Physiology. 4 th Edition. Wordsworth
	Publishing, Belmont, California.
7.	Lyndon RF. 1990. Plant Development. The Cellular Basis. Unnin Hyman,
	London.
8.	Steeves TA and Susses IM. 1989. Patterns in Plant Development. 2 nd Edition.
	Cambridge University Press, Cambridge.
9.	Mauseth JD. 1988. Plant Anatomy. Benjamin Cummings, California
10.	Fahn A. 1982. Plant Anatomy. 3 rd edition. Pergamon Press, Oxford
	Plant Reproduction
1.	Pulliah T, Lakshminarayana K and Hanumantha Rao B. 2008. Plant Reproduction.
	Scientific Publishers, Jodhpur, India.
2.	Bhojwani SS and Bhatnagar SP. 2000. The Embryology of Angiosperms. 4 th
	revised and enlarged edition. Vikas Publishing House, New Delhi.
3.	Raghavan V. 1999. Developmental Biology of Flowering Plants. Springer –
	Verlag, New York.
4.	Raghavan V. 1997. Molecular Embryology of Flowering Plants. Cambridge
	University Press, Cambridge.
5.	Shivanna KR and Swahney VK. (ed.) 1997. Pollen Biotechnology for Crop
	Production and Improvement. Cambridge University Press, Cambridge.
6.	The Plant Cell. Special Issue on Reproductive Biology of pants, Vol.5 (10) 1993.
	The American Society of Plant Physiologists, Rockville, Maryland, USA.
7.	Shivanna KR and Rangaswamy NS. 1992. Pollen Biology, A Laboratory Manual.
	Springer-Verlag, Berlin.
8.	Sedgely M and Griffin AR. 1989. Sexual Reproduction of Tree Crops. Academic
	Press, London
9.	Sedgely, M. and Griffin, A.R. 1989. Sexual Reproduction of Tree Crops, Academic

	Press, London.
10.	Leins P, Tucker SC and Endress PK. 1988. Aspects of Floral Development. J.
	Cramer, Germany.
11.	Shivanna KR and Johri BM.1985. The Angiosperm Pollen Structure and
	Function. Wiley Eastern Ltd., New Delhi.
12.	Procter M and Yeo P. 1973. The Pollination of Flowers. William Collins Sons,
	London.

M.Sc. Botany - Semester III Core Paper 304: PLANT ECOLOGY

S. No	Unit		
	SECTION A		
1.	The environment: physical environment, biotic environment and abiotic environment. Ecology and human welfare. Climate, soil and vegetation patterns of the world: life zones, major biomes, vegetation and soil types of the world.		
2.	Habitat and niche: concept of habitat and niche, niche width and overlap, fundamental and realized niche, resource partitioning, character displacement.		
3.	Population Ecology: characteristics of a population, population growth curves, population regulation, life history strategies (r and k selection), concept of meta population, demes and dispersal, interdemic extinctions, age structured population.		
4.	Species interactions: types of interactions, interspecific competition, herbivory, carnivory. Ecological succession: types, mechanisms, changes involved in succession, concept of climax. Hydrosere and Xerosere		
	SECTION B		
5.	Community ecology: nature of communities, community structure and attributes, levels of species diversity and its measurement, edges and ecotones, community classification.		
6.	Ecosystem: structure and function. Energy dynamics. Mineral cycling (carbon, nitrogen and phosphorus). Primary production and decomposition. Structure and function of some Indian ecosystems– Terrestrial (forest, grassland) and aquatic (fresh water, marine, estuarine).		
7.	Biogeography: Major terrestrial biomes. Theories of island biogeography. Biogeographical zones of India.		
8.	Applied ecology: Environmental pollution – air, water and soil, kinds, sources, quality parameters. Effects on plant ecosystmems. Climate change – green house gases, ozone layer and ozone hole, consequences of climate change. Methods for mitigation of climate change: physical, chemical and biological. Biodiversity status, monitoring and documentation, major drivers of biodiversity change, biodiversity management approaches. Conservation biology: principles of conservation, major approaches to management. Indian case studies on		

Practical

Exhibits/ Experiments/ Suggested Laboratory Exercises	
1.	To study the stratification of plants in botanical gardens.
2.	To prepare life forms of botanical gardens of college campus. Compare the
	biological spectrum of college campus with normal biological spectrum.
3.	To estimate the frequency of plants in the college campus.
4.	To estimate the relative frequency of plants in the college campus.
5.	To estimate the density of a plant species in the college campus.
6.	To estimate the relative density of a plant species in college campus.
7.	To determine the minimal size and number of quadrats required for reliable
	estimate of biomass in grass land.
8.	To determine the basal area of a plant species in the campus.
9.	To determine the important value index (IVI) of plant species in the campus.
10.	To estimate IVI of the plant species in a woodland using point center quarter
	methods.
11.	To determine plant diversity indices (Shamon - Wiener) continuum of
	dominance, species richness, equitability and biodiversity of species in the
	campus.
12.	To estimate rate of carbon dioxide evolution from different soils using soda lime
	or alkali absorption method.
13.	To study environmental impact of a given developmental activity using check
	list as a EIA method.
14.	Enumeraration in pond ecosystems.
15.	To study the composition of woodland ecosystem.
16.	Demonstration of chemical energy stored in leaves which was the transformed
	from
	radiation energy.
17.	Estimation of biomass of cropland plots.

18.	Estimation of chlorophyll.	
19.	Determination of leaf area index methods with plain graph sheets.	
20.	To determine the water holding capacity of soil collected from different locations	
Defenence Decks		

Reference Books	
	American Public Health Association American Water Works Association. 2013.
1.	Standard Methods for the Examination of Water and Waste Water. General
	Books LLC, USA.
2.	Sharma PD. 2007. Ecology and Environment. Rastogi Publications, Meerut.
3.	Sharma PD. 2001. Ecology and Environment. Rastogi Publications, Meerut.
4.	Smith RL. 1996. Ecology and field Biology. Harper Collins, New York.
5.	Sokal RR and Rohit FJ. 1995. Biometry. W.H. Freeman and Co., New York.
6.	Batra NK. 1992. Treatise on Plant Ecology. Pradeep Publications, Delhi.
7.	CJ. 1989. Ecological Methodology. Harper and Row, New York, USA.
8.	Ludwig JA and Reynolds JF. 1988. Statistical Ecology. Wiley, New York.
9.	Magurran AE. 1988. Ecological Diversity and its measurement. Croom Helm, UK.
10	Moore PD and Chapman SB. 1986. Methods in Plant Ecology. Blackwell
10.	Scientific, Oxford, UK.
11	Pielow EC. 1984. The interpretation of Ecological Data. John and Wiley Sons,
11.	USA.
	Muller – Dombois D and Ellenberg H. 1974. Aims and Methods of Vegetation
12.	Ecology. Blackburn Press, New Jersey.
10	Odum PE. 1971. Fundamentals of Ecology. 3 rd Edition. W. B. Sounders,
13.	Philadelphia.
14.	Dansemmire RF. 1968. Plant Communities. Horpes and Row, New York.
15.	Misra R. 1968. Ecology Work Book. Oxford and IBH Publishing Co., New Delhi.
	Ambasht RS and Ambasht NK. AText Book Plant Ecology. CBS Publishers and
16.	distributors, New Delhi.
L	

M.Sc. Botany – Semester III Core Paper 304: PLANT PHSYSIOLOGY

S. No	Unit
	SECTION A
1.	Plant water relations: free energy and chemical potential, osmotic potential, water potential and its determination, active and passive absorption of water, stomatal physiology and mechanisms of stomatal opening and closing, Soil-plant-atmosphere-continuum concept (SPAC), mechanism of water transport.
2.	Mineral nutrition: passive and active uptake of ions, translocation of minerals in plants, essential elements: their functions and symptoms of mineral deficiency, importance of foliar nutrition and use of chelates in agriculture, root microbe interactions in facilitating nutrient uptake, mechanism of assimilate translocation.
3.	The flowering process: phytochrome: structure, photochemical and biochemical properties, role in photomorphogenesis. Photoperiodism and its significance, mechanisms of floral induction. Vernalization. Morphological, biochemical and metabolic changes accompanying seed germination.
4.	Plant growth regulators and elicitors: biosynthesis, physiological effects and mechanism of action of auxins, gibberellins, cytokinins, ethylene, abscisic acid, brassinosteroids, polyamines, jasmonic acid and salicylic acid. Role of plant growth regulations in agrihorticulture. Hormone receptors.
	SECTION B
5.	Fundamental of Enzymology: General aspects, allosteric mechanism, regulatory and active sites, isozymes, kinetics of enzymatic catalysis, Michaelis-Menten Equation and its significance, Mechanism of enzyme action.
6.	Photochemistry and Photosynthesis: General concepts and historical back ground, evolution of photosynthetic apparatus, Redox reactions, photosynthetic pigments and light harvesting complexes, photo-oxidation of water, mechanisms of electron and proton transport, structure, synthesis and function of ATP, carbon assimilation-the Calvin's cycle, photorespiration and its significance, the C_4 cycle and CAM pathway, biosynthesis of starch and sucrose, physiological and ecological considerations.
7.	Respiration and Lipid metabolism : Plant respiration, glycolysis, the TCA cycle, electron

	transport and ATP synthesis, pentose phosphate pathway, glyoxylate cycle, alternative
	oxidase system, structure and function of lipids, fatty acid biosynthesis of membrane lipids,
	structural lipids and storage lipids and their catabolism. Nitrogen fixation and nitrogen
	metabolism: Biological nitrogen fixation, nodule formation and nod factors, biosynthesis of
	amino acids and proteins, mechanism of nitrate uptake and reduction.
8.	Stress Physiology: Plant responses to biotic and abiotic stress, mechanisms of biotic and
	abiotic stress tolerance, water deficit and drought resistance, salinity stress, metal toxicity,

heat stress and oxidative stress.

Practical

	Exhibits/ Experiments/ Suggested Laboratory Exercises
1.	Determination of osmotic potential.
2.	Determination of water potential.
3.	Demonstration of osmosis.
4.	Determination of root pressure.
5.	Effects of high and low temperatures upon the permeability of the cytoplasmic membranes.
6.	Determination of suction force due to transpiration.
7.	Stomatal frequency and stomatal index of leaves.
8.	Rate of transpiration in leaves by cobalt chloride paper method.
9.	Determination of amylase activity
10.	Extraction and separation of chloroplast pigments by paper chromatographic method
11.	Determine chlorophyll a / chlorophyll b contents in C_3 and C_4 plants by spectrophotometric method
12.	Determination of Hill reaction
13.	Determination of rate of Aerobic respiration by continuous current method
14.	Determination of rate of Anaerobic respiration by continuous current method
15.	Determination of catalase activity
16.	Demonstration of Polyphenol oxidase
17.	Determination of reducing sugars

18.	Estimation of free acids in Bryophyllum in terms of milliequivalents of NaOH
19.	Extraction and estimation of seed proteins depending upon the solubility
20.	SDS – PAGE for soluble proteins extracted from the given plant materials
21.	Separation of isozymes esterase, peroxidase by native polyacrylamide gel electrophoresis
22.	Effect of Light quality on the rate of Photosynthesis
23.	Effect of CO ₂ concentartion on the rate of Photosynthesis
24.	Estimation of Starch by gravimetric method
25.	Demonstration of Starch hydrolysis
26.	Separation of Chloroplast pigments by chemical method
27.	Separation of amino acids and carbohydrates through two dimensional chromatographic method

Reference books

1.	Sinha SK 2014. A text book of Plant Physiology. Centrum Press, New Delhi.
2.	Seema Yadav 2014. Plant Physiology. SBW publishers, New Delhi.
3.	Heribert H and Kazuo S (eds) 2010. Plant responses to abiotic stress. Series
	Topics in Current Genetics, Vol 4. Springer, Berlin.
4.	Philip Stewart and Schine Gobig 2011. Plant Physiology. CRC Press.
5.	Moore TC. 2011. Biochemistry and Physiology of Plant Hormones. Springer,
	New York.
6.	Hooykaas PJJ, Hall MA and Libbenga KR (ed) 1999. Biochemistry and Molecular
	Biology of Plant Hormones. Elsevier, Amsterdam, Netherlands.
7.	Taiz L and Zeiger E. 1998. Plant Physiology . 2 nd Edition. Sinauer Associates
	including Publishers, Massachusetts, USA.
8.	Wisthoff P. 1998. Molecular Plant Development from Gene to Plant. Oxford
	University Press, Oxford, UK.
9.	Thomas and Vince – Prue D. 1997. PhotoPeriodism in Plants . 2 nd Edition.
	Academic Press, Sandeigo, USA.
10.	Hopkins WG. 1995. Introduction to Plant Physiology. John Wiley & Sons
	Including New York, USA.
11.	Mohr H and Schopfer P. 1995. Plant Physiology. Springer-Verlag, New York.

12.	Salisbury FB and Ross CW. 1992. Plant Physiology. 4 th Edition. Wordsworth
	Publishing Company, California, USA.
13.	Noggle GR and Fritz GJ. 1991. Introductory plant physiology. 2 nd Edition. Prentice
	hall of India Limited, New Delhi.
14.	Davies PJ (ed) 1987. Plant hormones and their role in Plant Growth and
	Development. Mertinus Nijh off Publishers, Netherlands.
15.	Witham FH and Devlin RM. 1986. Plant Physiology. CBS Publishers and
	Distributors, Bangalore.
16.	Wilkins MD. 1987. Advanced Plant Physiology. English Language Book Society,
	Longman Scientific and Technical, Harlow, UK.
17.	Bewley JD and Black M. 1982. Physiology and Biochemistry of seed in relation
	to germination and dormancy. Volume 1 and 2. Springer – Verlag, Berlin.
18.	Khan AA. 1982. The Physiology and Biochemistry of Seed Development,
	Dormancy and Germination. Elsevier, Amsterdam, Netherlands.
19.	Ting IP. 1982. Plant Physiology. Addison-Wesley, Reading, MA.
20.	Murthy HNK. 1981. Plant growth substances including applications in
	Agriculture. Tata McGraw Hill Publishing Company Ltd., New Delhi.
21.	Kramer PM and Kozlowski TT. 1980. Physiology of Woody Plants. Academic
	Press, New York.
22.	Hewit EJ and Smith TA. 1975. Plant Mineral Nutrition. English University Press,
23.	Meyer AM and Poljakoff-Mayber A. 1975. The germination of Seeds. Pergamon
	Press, Canada.
24.	Hess D. 1974. Plant Physiology. Narosa Publishing House, New Delhi.
25.	Audus LJ. 1972. Plant Growth Substances. Volume 1. Chemistry and Physiology.
	Leonard Hill, UK.
26.	Slayter RO. 1967. Plant Water Relationships. Academic Press, London
27.	Hillman WS. 1963. Physiology of Flowering. Holt, Reinhart and Winston, New
	York.
L	

M.Sc. - Semester III

Non-core Paper Offered by the Department of Botany

Paper 305: Principles of Genetic Analysis

S.No	Unit	
	SECTION A	
1.	Relationship between genes, characters and environment, penetrance and expressivity	
	of genes, qualitative and quantitative characters, modifiers, relation between	
	chromosomes, DNA, RNA and genes. Split nature of eukaryotic genes. Variant forms	
	of eukaryotic genes	
2.	Mendel's Experiments and principles. F ₁ , F ₂ , test cross and back cross analysis.	
	Concept of allelism and dominance.Pedigree analysis.	
3.	Multiple alleles: blood groups in humans. Semi and co dominance. Modified F2 ratios	
	due to interaction between two genes. Genetic analysis of quantitative and quasi-	
	quantitative characters.	
4.	Concept of Linkage and linkage groups ; linkage analysis in diploid organisms and	
	methods to construct linkage maps. Tetrad analysis.	
SECTION B		
5.	Genetic analysis in microorganisms: Auxotrophic mutants. Genetic recombination	
	through conjugation, transformation and transduction methods . Fine structure analysis	
	of the gene of Benzer.	
6.	DNA markers: concept of DNA fingerprinting – establishment of molecular markers	
	RFLP, RAPD & AFLPs, QTL analysis.	
7.	Genetic analysis of sex linked, sex influenced and sex-limited characters. Genetic	
	analysis in populations – Hardy-Weinberg Law and its applications.	
8.	Applications of genetic analysis in Agriculture, Animal Husbandry, Industry and	
	medicine; Overview of genetic engineering. Eugenics.	
	Reference Books	
13.	Hartl, D.L. and Jones, E.W. 1998. Genetics: Principles and Analysis (4 th edition)	
	Jones and Bartlett Publishers, Massachusetts, USA.	
14.	Snustad, D.P. and Simons, M.J., 2000. Principles of Genetics (2 nd Edition), John	
	Wiley and Sons Inc., USA.	
15.	Lewis, R. 1997. Human Genetics: Concepts and Applications (2 nd edition). WCB	

	Mc Graw Hill, USA.
16.	Russel, P.J. 1998. Genetics (5 th edition). The Benjamin/ Cummings Publishing
	Company Inc., USA.
17.	Griffiths, A.J.F., Miller, H.T., Suzuki, Lewontin, Gelbart Intd. Genetic analysis,
	(6 th edition), H.F. Freeman and Co.
18.	Atherly, A.G., Girton, J.R. and McDonald, J.F. 1999. The Science of Genetics,
	Saunders College Publishing, Fort Worth, USA.
19.	Hartl, D.L. and Jones, E.W. 1998. Genetics: Principles and Analysis (4 th edition)
	Jones and Bartlett Publishers, Massachusetts, USA.

M.Sc. Botany - Semester IV

Core Paper 401: GENETIC ENGINEERING OF PLANTS AND MICROBES Theory

S.No	SECTION A Basics of rDNA technology: restriction enzymes–types, nomenclature, mechanism of action. Methodology of rDNA molecule synthesis–joining overlapping ends, blunt end joining, polylinkers. Vectors–features. Cloning vectors– plasmids, viral DNA,
1.	action. Methodology of rDNA molecule synthesis-joining overlapping ends, blunt end
	joining, polylinkers. Vectors-features. Cloning vectors- plasmids, viral DNA,
	cosmids, bacterial and yeast artificial chromosomes(BACs and YACs). Expression
	vectors.
2.	Bacterial transformation. In-vitro packaging. Recognition of transformants-antibiotic
	resistance, Lac Z gene based selection. Genomic library, cDNA library.
3.	Methods of gene transfer in plants: electroporation, gene gun, Agrobacterium
	mediated- binary and co integrative vector based. Chloroplast transformation.
4.	Classical examples of successful cases of transgenic plants-fungal, bacterial, viral and
	insect tolerance (BT and proteinase inhibitors), herbicide tolerance, abiotic stress
	tolerance, male sterility-Barnase-Barstar. Quality improvement -golden rice, late
	ripening tomatoes (Flavr Savr).
	SECTION B
5.	Techniques in genetic engineering I: Blotting techniques- Southern, Northern and
	Western blotting, radioactive and non-radioactive labeling, detection of hybridization.
	In-situ hybridization-technique, radioactive and non-radioactive probes, enzyme and
	fluorescence detection methods (FISH), applications of the technique. PCR- technique,
	types, applications. DNA sequencing- basic principle of Sanger's method, automated
	DNA sequencing, high throughput DNA sequencing.
6.	Techniques in genetic engineering II: DNA fingerprinting-hybridization based
	(RFLP), PCR based (RAPD, AFLP). Restriction mapping. Microarray technique and
	its applications.
	Sequencing genomes-whole genome sequencing, shot gun sequencing. Next generation
	sequencing- 454 sequencing.
7.	Plant growth promoting bacteria – nitrogen fixers, siderophores, phytoharmone
	production. Genetic improvement of industrially important microbes for production
	of useful products - biopesticides, biofertilizers, antibiotics. Intellectual Property
	Rights, farmer's rights. Patents. Ethical and environmental issues in genetic engineering.

 Bioinformatics: Scope. Data bases– types, Genbank, PIR, PDB. An account of NCBI. Web based tools for sequence searches –BLAST. Genome projects, genome annotation, gene annotation, features of the genome of *Arabidopsis*, rice. Genomics– structural genomics, comparative genomics, functional genomics. Molecular phylogeny and phylogenetic trees.Metagenomics.

Practicals	
S. No	Exhibit/Experiment
1.	Isolation of plasmid DNA
2.	Bacterial transformation and identification of transformation
3.	Plant DNA isolation
4.	Restriction enzyme digestion and gel electrophoresis
5.	Assignments on the syllabus
6.	Pictorial demonstration of the various techniques
	Reference Books
1.	Glick BR, Pasternak JJ and Patten CL. 2010. Molecular Biotechnology Principles
	and Applications of rDNA. ASM Press, USA.
2.	Attwood TK, Smith DJP and Phukan S. 2009. Introduction to Bioinformatics.
	Pearson Education Ltd., UK.
3.	Sateesh MK. 2008. Bioethics and Biosafety. I K International Pvt. Ltd., Bangalore.
4.	Channarayappa. 2007. Molecular Biotechnology Principles and practices. Taylor
	and Francis, UK.
5.	Watson JD. 2007. Recombinant DNA: Genes and Genomes: A short course. W.
	H. Freeman, USA.
6.	Primrose SB and Twyman RM. 2006. Principles of Genome Analysis and
	Genomics. Blackwell publishers, USA.
7.	Lewin B. 2004. Genes VIIII. Pearson Prentice Hall, New Jersey.

8. Chawla HS. 2002. Introduction to Plant Biotechnology. Oxford and I B H Publlishers, USA.

M.Sc. Botany – Semester IV
Core Paper 402: EVOLUTION AND PLANT BREEDING
Theory

C No	Theory
S. No	Unit
	SECTION A
1.	Origin of life and unicellular evolution: Origin of basic biological molecules, abiotic
	synthesis of monomers and polymers, concept of Oparin and Haldane, experiment of
	Miller (1953). The first cell – evolution of prokaryote, RNA world. Origin of
	eukaryotic cells- Endosymbiont theory, evolution of unicellular eukaryotes,
	anaerobic and aerobic metabolism.
2.	Theories of organic evolution: Lamarckism, Darwinism-concepts of variation,
	adaptation, struggle, fitness and natural selection, Synthetic theory, phyletic
	gradualism, punctuated equilibrium, concepts of neutral evolution.
3.	Molecular evolution: molecular divergence and molecular clocks-protein and
	nucleotide sequence analysis, gene duplication and divergence. Hardy-Weinberg
	equilibrium and its applications.
4.	Plant breeding: history, objectives, activities, important achievements and undesirable
	consequences. Organizations for crop improvement in India: ICAR, Agricultural
	universities, Central institutes for crop improvement, All India coordinated
	programmes. Plant Introduction, domestication and acclimatization.
	SECTION B
5.	Methods of breeding self pollinated crops: Mass selection, Pureline selection,
	Pedigree method, Bulk method, Backcross method, Multiline varieties.
6.	Methods of breeding cross pollinated plants: Bulk Selection, Recurrent selection,
	Synthetic varieties, Hydbridization. Inbreeding depression and Heterosis – genetic and
	molecular basis.
7.	Breeding of vegetatively propagated crops. Role of apomixis in plant breeding. Mutation breeding.
8.	Biostatistical methods: basic concept of parametric and non-parametric methods.
	Graphical representation. Measures of central tendency and dispersion. Probability
	distributions-Binomial, Poisson and Normal distributions. Concepts of confidence
	intervals, types of error, levels of significance. Regression and correlation; t-test.
	ANOVA. Basic introduction to multivariate statistics.

_	Practical
1.	Problems based on Hardy Weinberg law
2.	Line diagrams showing the plan of different methods of breeding self pollinated
	crops- Mass selection, Pureline selection, Pedigree method,
3.	Line diagrams showing the plan of different methods of breeding cross pollinated
	crops- Bulk Selection, Recurrent selection.
4.	Methods of hybridization in rice, sorghum, bajra, cotton in standing crop in the field.
5.	Assignments with problems for computing measures of central tendency and
	dispersion- mean, median and mode, standard deviation and standard error.
6.	Assignment with problems for computing correlation and regression coefficients.
7.	Assignment with problems for implementing t test.
8.	Assignment with problems for computing ANOVA.
	References
1.	Singh BD. 2012. Plant Breeding: Principles and Methods. Kalyani Publishers,
	Delhi.
2.	Stickberger MW. 1985. Genetics. McMillan, New York.
3.	Frey KJ. 1981. Plant Breeding II. Iowa State University Press, Oxford.
4.	Jones DA and Wilkins DA. 1971. Variation and adaptation in plant species.
	Heinemann Educational Books Ltd., London.

- Stebbins GL.1971. Chromosomal evolution in Higher Plants. Edward Arnold Publishers Ltd., London.
- 6. Poehlman JM and Borthakur D. 1969. Breeding Asian field crops: With Special Reference to Crops of India. Oxford and IBH Pub. Co., Delhi.
- 7. Briggs FN and Knowles PF. 1967.Introduction to Plant Breeding. Reinhold Pub.Corp., New York.
- 8. Brewbaker JL. 1964. Agricultural Genetics. Prentice-Hall, New Jersey, USA.
- 9. Allard RW. 1961. Principles of Plant Breeding. 2ndEdition. John Wiley and Sons Inc., New York.

M.Sc. Botany - Semester IV Elective Paper: AGRICULTURAL BIOTECHNOLOGY

S. No	Unit
	SECTION A
1.	Definition and perspective of biotechnology. New technologies: scope, potential and achievements. Introduction to agriculture. Effects of biotechnology on agrobiodiversity. Biotechnology for agriculture. Genetic manipulation in plant breeding of crop plants. Dangers of genetic uniformity. Preservation and exchange of genetic resources. Use of transgenic plants in industry, agriculture and medicine.
2.	Origin of agriculture. Conventional plant breeding approaches (Introduction, selection, hybridization, mutation breeding and polyploidy breeding) for crop improvement. Exploiting natural variability. Inbreeding depression and heterosis. Self incompatibility and methods of its overcoming. Male sterility– types and its applications in agriculture.
3.	Mutation breeding for crop improvement: mutagens – mode of action of chemical mutagens at the molecular level–transitions, transversions and frame shifts. Chromosome aberrations. Molecular theories of radiation induced chromosomal aberrations. Radiation sterilized food.
4.	Organizations for crop improvement in India: ICAR, IARI, ICRISAT and CSIR. Biofertilizers, types (<i>Rhizobium Azotobacter, Azospirillum</i> , blue green algae and Vasicular arbuscular mycorhizal (VAM) fungus), production, utility and limitations.
	SECTION B
5.	The molecular basis of plant breeding and genetic engineering. Use of radioisotopes in agriculture. Biological waste treatment and reuse of wastes.
6.	Micro propagation technology and its use in agriculture. Embryo culture and its utility in hybridization programmes. Anther culture, methods and applications, Cell culture types and uses. Protoplast culture, achievements and limitations, Artificial seeds production, achievements and limitations.
7.	Methods of plant genetic engineering: vector mediated and vector less methods.

	Production and applications of transgenics with reference to disease and insect
	resistance.
8.	General principles of plant protection. Principles of pest management - specific
	integrated pest management (IPM) practices for rice, sugarcane, and cotton.
	Biological control of pests, pathogens and weeds, biopesticides, entamopathogen
	formulations for use in pest management.

Practical

	Exhibits/ Experiments/ Suggested Laboratory Exercises
1.	Callus cultures.
2.	Micropropagation
3.	Isolation of plant genomic DNA from leaf tissue
4.	Separation of seed proteins using SDS-PAGE
5.	Separation of Isozymes using PAGE
6.	Isolation of protoplast
7.	Culture of entamopathogens
8.	Formulation of biopesticides

Reference Books

1.	Chadwick K and Leenhouts HP. 2012. The molecular theory of Radiation
	Biology. Springer Berlin Heidelberg, Berlin.
2.	Dhaliwal GS and Arora R. 1994. Trends in agriculture insect pest management.
	Common wealth Publishers, New Delhi.
3.	Mukherji KG and Chincholkar SB. 2006. Biological Control of Plant diseases.
	Heaworth Food and Agricultural Products Press, New Delhi.
4.	Sharma PD. 1993. Environmental biology and Toxicology. Rastogi and Company
	Meerut.
5.	Sharma R. 1992. Biotechnology in Agriculture. Biotech Books, New Delhi.
6.	Obe G and Natarajan AT. 1994. Chromosomal Alterations: Origin and
	Significance. Springer-verlag, Berlin.
7.	Freifelder D. 1987. Molecular genetics. Jones & Berlet Publishers.
8.	Dodds JH and Roberts IW. 1985. Experiments in plant tissue culture. Cambridge

	University Press, New York.
9.	Singh BD. 1983. Plant Breeding. Kalyani Publishers,
10.	Auerbach C. 1976. Mutation Research: Problems Research and Perspectives.
	Chapman and Hall, London.
11.	Poehlman JM and Borthakur D. 1969. Breeding Asian field crops: With Special
	Reference to Crops of India. Oxford and IBH Pub. Co., Delhi.
12.	Martin H. 1928. The Scientific Principles of Crop Protection. 4 th Edition.
	Edward Arnold, London.
13.	Bajaj YPS. Biotechnology in Agriculture and Forestry. Vol. 22. Springer –
	Verlag.

M.Sc. Botany - Semester IV

Elective Paper: APPLIED PHYCOLOGY

S. No	Unit
	SECTION A
1.	Algae in diversified habitants (terrestrial, freshwater, and marine).Structure,
	reproduction, and lifecycles of some algae such as Ulva, Enteromorpha, Codium,
	Caulerpa, Ectocarpus, Padina, Sargassum, Porphyra, Gelidium, Eucheuma, Hypnea,
	Gracilaria, Nostoc, Spirulina.
2.	Composition and distribution of phytoplankton of Indian waters. Sampling techniques
	of phytoplankton. Primary production.
3.	Structure and reproduction of some important micro algae such as Chlorella,
	Scenedesmus, Tetrasilmis, Dunaliella, Ceratium, Peridinium, Cyclotella and
	Skeletonema, and their importance in aqua culture industry
4.	Algae as biofertilizers. Economic uses of fresh water and marine algae and their
	products.Mass culture and biomass of microalgae (Chlorella, Scenedesmus,
	Spirulina).
	SECTION B
5.	Sea weed farming in India with emphasis on the methods of seaweed cultivation of
	Euchema, Porphyra, Gelidiella, Gracilaria.
6.	Algae and water pollution; Algae as indicators of pollution, Toxic algae, Phycotoxins
	and their effects on human beings.
7.	Bio-fouling, Sewage disposal, waste land reclamation. Methods of extraction of Agar-
	agar and Alginic acid.
8.	Industrial products from marine and fresh water algae, Carbon sequestration through
	micro algae.
	Practical

S. No	Exhibit/Experiment
1.	Study of the following algae. Ulva, Enteromorpha, Codium, Caulerpa, Ectocarpus,
	Padina, Sargassum, Porphyra, Gelidium, Gracilaria, Hypnea, Nostoc, Spirulina.
2.	Collection, isolation and identification of phytoplankton.
3.	Estimation of salinity, oxygen, primary production.

4.	Spore counting and germination of different types of spores from marine algae.
5.	Study of plankton cell density.
6.	Extraction of Agar-agar from red algae, Extraction of Alginic acid from brown algae.
7.	Acquaintance with the marine algal flora of Visakhapatnam coast.
8.	Acquaintance with the fresh water algae in the lakes and pools of Visakhapatnam and nearby areas.

Reference Books 1. Richard S. 2010. Micro algae: A Potential for carbon capture. Kumar HD. 1990. Introductory Phycology. Affiliated East-West Press, New Delhi. 2. 3. Subba Rao NS. 1988. Biofertilizers in Agriculture. Oxford publishing Company Private Ltd., New Delhi. 4. Kumar HD. 1985. Algal Cell Biology. Affiliated East-West Press, New Delhi. 5. Fogg GE, Stewart WDP, Fay P and Walsby AE. 1973. The Blue Green Algae. Academic Press, London. Venkata Raman G.S. 1972. Algal Biofertilizers and Rice cultivation. Today and 6. Tomorrow printers and publishers, New Delhi. 7. Chapman VJ.1970. The Sea weeds and their uses. Methena and Company Ltd., 8. Round FE.1970. The Biology of the Algae. Edward Arnold Ltd., 9. Trait RV.1968. Elements of Marine Ecology. Butterworths, London. 10. Dawson EY. 1966. Marine Botany. Holt, Reinhart and Winston Inc., NewYork. 11. Levin R. 1964. Physiology and Biochemistry of Algae. Academic Press, Oxford. 12. Lewis JR.1964. The Ecology of Rocky Shores. The English University Press Ltd., London. 13. Aymount JEE.1963. Plankton and productivity in Oceans. Pergamon Press, Oxford. 14. Singh RN. 1961. Role of Blue green algae in Nitrogen economy of Indian Agriculture. ICAR, New Delhi. 15. Smith GM. (ed.) 1951. Manual of phycology. Cronica Botanica Company, U.S.A. 16. Fritsch FE.1935. The Structure and Reproduction of Algae. Cambridge University

Press, Cambridge.

51

M.Sc. Botany - Semester IV Elective Paper: PLANT PATHOLOGY

S. No	Unit
	SECTION A
1.	Importance of plant diseases, classification of plant diseases, causes of plant diseases, symptoms of plant diseases, post harvest diseases. Dispersal of plant pathogens- active and passive.
2.	Infection phenomena – pre penetration, penetration and post penetration. Factors affecting infection. Effect of environment on plant disease development – temperature, humidity and light.
3.	Molecular basics of host pathogen interactions (fungi, bacteria & viruses) and genetic engineering for disease resistance. Defense mechanisms in plants: pre–and post–infectional defense mechanisms, phytoalexins.
4.	Role of enzymes in plant diseases – pectic, macerating, cellulolytic, lignolytic, proteolytic, lypolytic enzymes and hemicellulases, inactivation of enzymes.
	SECTION B
5.	Role of toxins in plant diseases – Phytotoxins, vivo toxins, host specific patho toxins & non specific patho toxins.
6.	Control of plant diseases: Cultural practices: field & crop sanitation, crop rotation; Chemical control: systematic & non systematic fungicides; Biological control. microbial pesticides.
	Plant diseases management through host resistance: vertical, horizontal, monogenic, polygenic, specific & general resistance. Development of resistant varieties.
7.	Symptoms, etiology, epidermology & control measures with reference to the following:
	Fungal diseases - Club root of crucifers, Damping off of seedlings. Leaf spot of

	turmeric, Ergot of bajra, Powdery mildew of Cucurbits, Whip smut of sugarcane,
	Grain smut of Sorghum, Bean rust, Coffee rust, Blast disease of rice, Wilt of
	cotton, Tikka disease of ground nut.
8.	Bacterial diseases - Citrus Canker, Angular leaf spot of cotton, Bacterial leaf
8.	Bacterial diseases – Citrus Canker, Angular leaf spot of cotton, Bacterial leaf Blight of rice, Brown rot of potatoes. Viral and phytoplasma diseases – Grassy

. S. No	Exhibits/ Experiments	
1.	Study of symptoms, microscopic examination of diseased parts and identification	
	of the pathogens involved in different plant diseases	
	Fungal diseases-Club root of crucifers, Damping off of seedlings. Leaf spot of	
	turmeric, Ergot of bajra, Powdery mildew of Cucurbits, Whip smut of sugarcane,	
	Grain smut of Sorghum, Bean rust, Coffee rust, Blast disease of rice, Wilt of	
	cotton, Tikka disease of ground nut.	
	Bacterial diseases-Citrus Canker, Angular leaf spot of cotton, Bacterial leaf	
	Blight of rice, Brown rot of potatoes.	
	Viral and phytoplasma diseases – Grassy shoot disease of sugarcane, Little leaf of	
	brinjal, rice tungro.	
2.	Isolation of fungal pathogens from leaves.	
3.	Isolation of fungal pathogens from soil.	
4.	Extraction of pectolytic enzymes from a pathogen.	
5.	Extraction of cellulase enzyme from a pathogen.	
6.	Isolation of plant pathogen-bacteria.	
7.	Isolation (purification) of plant viruses.	
	Reference Books	
1.	Ravichandra NG. 2013. Fundamentals of Plant Pathology. PHI Learning Pvt.	
	Ltd., Delhi.	

Ronald PC. 2007. Plant-Pathogen Interactions: Methods in Molecular Biology.
Humana Press, New Jersey.

3.	Mehrotra RS.2006. Plant pathology . Tata McGraw Hill Publishing Co. Ltd., New Delhi.
4.	Sharma PD. 2004. Plant pathology. Rastogi Publications, New Delhi.
	Bilgrami S and Dubey HC. 1998. A text book of modern Plant pathology. Sangam Books Ltd., Mumbai.
5.	Stacey G and Keen TN. (ed). 1996. Plant Microbe Interactions. Vols. I-III.
	Chapman and Hall, New York; Vol. IV. APS Press, St. Paul, Minnesota.
6.	Singh RS. 1990. Plant diseases. Oxford and IBH Publishing Co., New Delhi.
7.	Butler EJ. 1973. Fungi and diseases in plants. Periodical Expert Book Agency, Delhi.
8.	Roberts D and Boothroyd CW. 1973. Fundamentals of Plant pathology . W. H. Freeman and Co., Ltd., New York.
9.	Rangaswamy G. 1972. Disease of crop plants in India. Prentice Hall of India, New Delhi.
10.	Strobell GA and Mathre DE. 1970. Outline of Plant pathology. D. Van
	Nostrand-Reinhold Co., New York.
11.	Matthews REF. 1970. Plant virology. Academic Press, New York.
12.	Agrios GN. 1969. Plant Pathology. Academic Press, New York.
13.	Walker JC. 1969. Plant pathology. McGraw Hill Book Co., New York.
14.	Wheeler BEJ.1969. An introduction of Plant diseases. John Wiley and Sons
	Ltd., New York.
15.	Smith KM. 1968. Plant viruses. Methuen, London.
16.	Mundkar BB.1967. Fungi and Plant diseases. McMillan and Co. Ltd., Calcutta.
17.	Wood RKS.1967. Physiological Plant Pathology. Blackwell Scientific
	Publications, Oxford.
18.	Kelman A. 1967. Source Book of Laboratory Exercise in Plant Pathology. W.
	H. Freeman, New York.
19.	Rangaswamy G. 1962. Bacterial Plant Diseases in India. Asia Publishing House,

	Bombay.
20.	Horsfall JC and Diamond AE.1960. Plant Pathology – An Advanced Treatise –
	3 volumes. Academic Press, New York.
21.	Goodman et al.1957. Biochemistry and Physiology of Infections and Plant
	Diseases. Princeton, Van Nostrand, Belgium.
22.	Plank JEV.1953. Plant Diseases – Epidemics and Control. Academic Press,
	New York.

M.Sc. Botany – Semester IV

ELECTIVE PAPER: PLANT BIOSYSTEMATICS

Theory

S. No	Unit
	SECTION A
1.	Definition, History, Scope, Importance and Objectives of Plant Biosystematics.
	Biosystematics in the frame of work of evolution. Emphasis on orthodox and
	experimental taxonomy.
2.	Biosystematics categories: Phenotype, Genotype, Biotype, Ecotype, Subspecies,
	Ecospecies, Coenospecies, Comparium and Infraspecific variation.
3.	Population concept: Size and density; variation in individuals, ecological
	differentiation of population, plasticity of phenotype, geographical and regional
	variation.
4.	Transplant experiments of Claussen, Keck and Hiesy, Macmillan, Watson and
	Claussen.
	SECTION B
5.	Breeding Systems: Establishment of inbreeding and consequences, out breeding-
	its problems and perspectives, self incompatibility, isolating mechanisms.
6.	Modern trends in Taxonomy: Cytology, Phytochemistry, Embryology,
	Palynology, Anatomy, Taximetrics.
7.	Species concept: Models of species formation, dynamics and mechanism of
	speciation process, abrupt speciation. Polyploidy, catastrophic selection,
	Biological species concept, Leaky isolation barriers, Gene flow and selection.
8.	Species definition and classification. Types of species: Taxonomic species,
	Biological species, Semi species, Micro species, Successional species,
	Biosystematic species, Evolutionary species.
	Practical

Practical

1.	Investigation of variation and evolution through Experiments in Cytology,
	Anatomy, Palynology and Plant chemistry to set boundaries around species and
	genera in a family.
2.	A systematic study of 2 or more morphological variants of a species or 2 or more
	species of a genus, using comparative morphological, cytological and

	phytochemical methods.
3.	Exercise 1: To determine the variation (1) between different populations of a
	species,(2) between different species of a genus, (3) between different genera of a
	complex, by construction of polygons or polygraphs, scatter diagrams, bar
	diagrams and histograms.
4.	Exercise 2: Preparation of palynological slides – Study of pollen grain types in
	some angiosperms including the pollen grains of different populations of a
	species, of different species of a genus.
5.	Exercise 3: Phenotypic variability studies – Sketches from live specimens or from
	herbarium sheets or from text books or research publications of different
	populations of a species, growing in different environmental conditions.
6.	Exercise 4: Preparation and study of meiosis in 2 or more populations of a species
	as well as some classical cytological material.
7.	Exercise 5: Sketches from text books or from published papers relating to protein
	band patterns of seed proteins, Flavonoids and chromatograms.
8.	Each student has to submit a herbarium of 10 sheets consisting of different
	population samples of a species and 10 species of a family or a group of families
	from any part of India.

	Reference books
1.	Gurcharan Singh, 2009. Plant Biosystematics an integrated approach. Science
	Publishers, USA.
2.	S. Venkat Ratnam, 2009. Plant Biosystematics. MD-Publications, New Delhi.
3.	Pullaiah T. 1998. Taxonomy of Angiosprems, Regency Publications, New Delhi.
4.	Singh V and Jain DK. 1993. Taxonomy of Angiosprems. Rastogi Publications,
	Meerut.
5.	Heywood VH and Davis PH. 1991. Principles of Angiosperm Taxonomy. Krieger
	Publishing Co., Malabar, FL, USA.
6.	Stuessy TF. 1990. Plant Taxonomy. Colombia University Press, New York.
7.	Clive A. Stace. 1984. Plant Taxonomy and Biosystematics. Edward Arnold
	Publishers Ltd. London.
8.	William F Grant. 1984. Plant Biosytematics. Academic Press, New York.
9.	Naik VN. 1984. Taxonomy of Angiosprems. Tata McGraw-Hill Publishing, New
	Delhi.
L	

10.	Faegri K and Iversen J. 1975. Text Book of Pollen analysis. 3 rd Edition, Blackwell,
	Oxford and London.
11.	Gibbs RD. 1974. Chemotaxonomy of Flowering plants. McGill-Quien's
	University Press, Montred.
12.	Radford AE, Dickison, WC, Massey JR and Bell CR. 1974. Vascular plant
	systematic. Harper and Row, New York.
13.	Harborne JB. 1973. Phytochemical Methods: A Guide to Modern Techniques of
	Plant Analysis. Chapman and Hall, London.
15.	Sneath PHA and Sokal RR. 1973. Numerical Taxonomy. W. H. Freeman, San
	Francisco.
16.	Stebbins GL. 1971. Chromosomal Evolution in Higher Plants. Edward Arnold,
	London.
17.	Stebbins GL. 1971. Chromosome evolution in Higher Plants. Edward Arnold,
	Michigan, USA.
18.	Hawkes JG. 1968. Chemotaxonomy and serotaxonomy. Academic Press,
	London.
19.	Lawrence GHM. 1965. Taxonomy of Vascular Plants. Oxford and IBH
	Publishing, Oxford.
20.	Swain T. 1963. Chemical Plant Taxonomy. Academic Press, London.
21.	Sokal RR and Sneath PHA. 1963. Principles of Numerical Taxonomy. W. H.
	Freeman, San Francisco.
22.	Benson LD. 1962. Plant Taxonomy: Methods and Principles. Ronold Press, New
	York.
23.	Heslop-Harrison J. 1953. New concepts in Flowering Plant Taxonomy.
	Heinemann, London.
24.	Solbrig OT. 1970. Principles and methods of Plant Biosystematics. Macmillan
	Co., London.
25.	Dickison GH, Massey JH, Bell RG and Bridggs FW. 1967. Introduction to Plant
	Breeding. Reinhold Pub. Corp.,
26.	Alston RE and Turner BL. 1963. Biochemical systematics. Literacy Licensing,
	USA.
27.	Heywood VH. 1963. Modern methods in Plant Taxonomy. Academic Press,
	London.

28.	Maheshwari P. 1963. Recent Advances in the Embryology of Angiosperms.
	International soc. of Plant Morphologists. University of Delhi.
29.	Cronquist S. 1961. Comparative Plant Anatomy. Holt, Renehart and Winston,
	New York.
30.	Stebbins GL. 1950. Variation and Evolution in Plants. Colombia University
	Press, New York.
31.	Dobzhansky TH. 1937. Genetics and Origin of Species. Columbia University
	Press, New York.

S. No	Theory Unit
5.110	SECTION A
- 1	
1.	Cytogenetics of inversions – consequences of crossing over in different types of
	inversions, identification of chromosomes and location of inverted regions- breeding
	behaviour of peri and paracentric inversions, interchromosomal effects- cytogenetic
	uses and evolutionary significance of inversions.
2.	Cytogenetics of interchanges – meiotic configurations and consequences of crossing
	over (spore quartet analysis in maize as an example), identification of chromosomes
	involved and location of break points, tester stock establishment; A-B translocations;
	Cytogenetic importance and evolutionary significance of interchanges.
3.	Haploids: techniques for production of haploids, androgenic and gynogenic types,
	mono and poly haploids - uses of haploids.
4.	Cytogenetics of B-chromosomes : Distinction from A-chromosomes, effects on exo
	and endophenotypes, mechanisms of maintenance and elimination in natural
	populations.
	SECTION B
5.	Polyploids: Meiosis in autotriploids and autotetraploids with special reference to
	pachytene configurations - reasons for sterility; gene segregations in autopolyploids.
6.	Meiosis in allopolyploids with special reference to homologous and homeologous
	chromosome pairing - 5B system in wheat; Genome analysis in tobacco, wheat,
	Brassica and Gossypium. Production of alien addition and substitutes lines -
	concept of chromosomal engineering and gene juggling - use in gene transfer.
7.	Cytogenetics of sex-determination: chromosomal, genetic and environmental,
	organization of X- and Y- chromosomes; Apomixis – types, genetic basis and
	applications.
8.	Molecular biological approaches in Cytogenetics:use of molecular markers in
	chromosome mapping – recombinant inbred lines (RIL) and artificial chromosomes.
	chromosome walking and jumping. Top – down and bottom – up methods. Optical
	mapping of genome mapping. Organization and inter relationships of cereal
	genomes on the basis of molecular markers.

M.Sc. Botany - Semester IV Elective Paper: ADVANCED CYTOGENETICS Theory

Practical		
S. No	Exhibit/Experiment	
1.	Determination of circadian rhythms in mitotic cycle. – Allium, Aloe.	
2.	Computerized analysis of Karyotypes - Allium / Aloe/ Scadoxus/ Ornithogalum.	
3.	Feulgen staining of chromosomes.	
4.	Linear differentiation of chromosomes through C, Q and Ag-NOR banding	
	techniques – Ornithogalum / Allium / maize.	
5.	Meiosis in maize and <i>Rhoeo</i> .	
6.	Meiosis in polyploids – Pennisetum species.	
7.	Assignments related to topics mentioned in the theory syllabus.	
	Reference books	
1.	Lewin B. 2000. Genes VII. Oxford University Press, New York.	
2.	Weavor RF. 1999. Molecular Biology. WCB McGraw Hill, New York.	
3.	Gupta PK. 1995. Cytogenetics. Rastogi and Company, Meerut.	
4.	Glick BR and Thompson JE. 1993. Methods in Plant Molecular Biology and	
	Biotechnology. CRC Press, Boc Raton, Florida.	
5.	John B and Lewis KR. 1975. Chromosome Hierarch. Clarendon press, Oxford.	
6.	Sybenga J. 1975. Meiotic configurations. Springer, Berlin.	
7.	Sybenga J. 1973. General Cytogenetics. American Elsvier Pub Co., New York.	
8.	Swanson, merz and Young. 1967. Cytogenetics. Prentice Hall, India.	
9.	Lewis KR and John B. 1963. Chromosome Marker. J&A. Churchill Co.,	
	London.	
10.	Burnham, C.R. 1962. Discussions in Cytogenetics, Burgess Publishing Co.,	
	Minnesota.	

M.Sc. Botany - Semester IV Elective Paper: CROP PHYSIOLOGY AND BIOTECHNOLGY Theory

S. No	Unit	
SECTION A		
1.	Crop Physiology: Molecular biology of light reactions. Photosynthetic pathways.	
2.	Mechanism of Photorespiration. Biotechnological strategies to improve	
	photosynthesis, yield components. Source - sink relationships.	
3.	Stress Physiology: Physiology and molecular biology of stress tolerance in	
	response to water, salt and heavy metal stress.	
4.	Methods in biotechnology: Tissue culture techniques in crop improvement,	
	Protoplasts and cell fusion.	
SECTION B		
5.	Recombinant DNA technology: basic principles of recombinant DNA technique.	
	Techniques of transferring genes into plants.	
6.	Potentials of Biotechnology: Molecular mechanism to confer herbicide resistance	
	in crop plants. Genetic engineering to improve plant disease resistance.	
7.	Genetic manipulation of crops for insect resistance, Genetic engineering of seed	
	proteins and oils.	
8.	Bioinformatics: Fundamentals of Genomics and Proteomics. PCR and its application	
	in crop improvement, Principles of microarray technology and its applications.	
Practical		
S. No	Exhibit/Experiment	
1.	Exercise-1: Chlorophyll absorption spectrum and quantitative determinations	

S. No	Exhibit/Experiment
1.	Exercise-1: Chlorophyll absorption spectrum and quantitative determinations,
	assay of Hill reaction in isolated chloroplast. Crop growth analysis.
2.	Exercise-2: Determination of CO2 compensation points in some crop plants,
	Estimation of carbohydrate, protein and nucleic acid contents in plants.
3.	Exercise-3: Determination of the activities of some enzymes associated with
	Carbohydrates and protein metabolism.
4.	Exercise-4: Effect of nitrogen and potassium on the growth and yield of crop
	plants.
5.	Exercise-5: Leaf anatomy in relation to diversity in photosynthetic pathways.
6.	Exercise-6: Effect of water and salt stress on the accumulation of proteins.
7.	Exercise-7: Estimation of nitrogen, phosphorus and potassium.

8.	Exercise-8: Experiments to study the effect of water and salt stress on seed
	germination and seedling development.
9.	Exercise-9: Experiments to study the weed control using some common herbicides.
10.	Exercise-10: Polyacrylamide gel electrophoresis of proteins.
11.	Exercise-11: Isolation of DNA.
12.	Exercise-12: Polymerase chain reaction.
13.	Exercise-13: Isolation of explants, establishment and maintenance of callus; Sub-
	culture of callus. Study of Somaclonal variation.
14.	Exercise-14: Isolation and culture of single cells.
15.	Exercise-15: Experiments on herbicide resistance and disease resistance in plants.

Reference Books

Plant Biotechnology, a laboratory manual. Wm. C. Brown
е.
ng. 1995. Comprehensive Biotechnology. Vol. 1. Pergamon
ers O (ed) 1994. Molecular Biology in Crop Protection.
e SB. 1994. Principles of gene manipulation. Blackwell
NR and Desai BB. 1990. Post Harvest Biotechnology of
ental Plants. N. Bayoprokash, Calcutta
3. Genome Analysis. IRI Press, Oxford.
nvitro Culture of Higher Plants. Martinus Nihoff Publishers
Molecular Biotechnology. Blackwell Scientific Publications,
chnology and Crop Improvement and Protection. BCPC
h N (ed) 1983. Plant Biotechnology. Cambridge University
GJ. 1977. Introductory plant physiology.
PS. 1977. Plant Cell, Tissue and Organ Culture. Springer –
15. 1977. Hant Cen, Hissue and Organ Culture. Springer –
15. 1977. Hant Cen, Hissue and Organ Culture. Springer –

14.	Burris RH and Black CC (ed) 1975. CO ₂ Metabolism and Productivity of Plants.
15.	Evans IT. 1975. Crop Physiology.
16.	Major AM and Mayber P. 1975. The germination of seeds . 2 nd Edition.
17.	Mayber PA and Gele J. (ed) 1975. Plants in Saline Environments.
18.	Ashston and Crafts A. 1973. Mode of Action of Herbicides.
19.	Epstein E. 1972. Mineral Nutrition of Plants: Principles and Perspectives.
20.	Fogg GK. 1972. Photosynthesis.
21.	Hillman WS. 1972. The Physiology of Flowering
22.	Kozlowski TT. (ed) 1972. Seed Biology. 3 Vols.
23.	Levitt J. 1972. Response of Plants to Environmental Stresses.
24.	Hatch MD, Osmond CB and Slatyer RO (ed) 1971. Photosynthesis and
	Photorespiration.
25.	Gregory RPF. 1971. Biochemistry of Photosynthesis.
26.	Zelitch I. 1971. Photosynthesis, Photorespiration and Plant Productivity.
27.	Gollek B. (ed) 1970. Structure and Function of Plant Cells in Saline Habitats.
28.	Kozlowski TT. (ed) 1968. Water Deficit and Plant Growth.
29.	Annual Review of Plant Physiology. 1950. Vol. – Annual Reviews Inc., Stanford.