(19) INDIA

(22) Date of filing of Application :01/11/2023 (43) Publication Date : 17/05/2024

(54) Title of the invention : METHOD FOR DETERMINING THE COEFFICIENT OF ELASTIC UNIFORM COMPRESSION (CU) ACCOUNTING FOR EMBEDMENT DEPTH EFFECT

		(71)Name of Applicant: 1)Andhra University Address of Applicant: Andhra University, Waltair, Visakhapatnam-530003, Andhra Pradesh, India. Visakhapatnam
 (51) International classification (86) International Application No Filing Date (87) International Publication No (61) Patent of Addition to Application Number Filing Date (62) Divisional to Application Number Filing Date 	:E02D1/00, G01N33/24, G06F17/18 :NA :NA :NA :NA :NA :NA	Name of Applicant: NA Address of Applicant: NA (72)Name of Inventor: 1)Prof. C. N. V. Satyanarayana Reddy Address of Applicant: Professor in Soil Mech & Geotechnical Engineering, Department of Civil, Andhra university, Waltair, Visakhapatnam-530003, Andhra Pradesh, India. Visakhapatnam 2)Atli Divakar Address of Applicant: Research Scholar, Department of Civil, Andhra university, Waltair, Visakhapatnam-530003, Andhra Pradesh, India. Visakhapatnam 3)R. Venkatesh Address of Applicant: Student, Department of Civil, Andhra university, Waltair, Visakhapatnam-530003, Andhra Pradesh, India. Visakhapatnam

(57) Abstract:

ABSTRACT: Title: Method for Determining the Coefficient of Elastic Uniform Compression (Cu) Accounting for Embedment Depth Effect The present disclosure proposes a method for determining the coefficient of elastic uniform compression (Cu) by accounting the effect of the embedment depth of the machine foundation. In specific, a generalised equation may be developed for the determination of the coefficient of elastic uniform compression (Cu) considering the effect of the embedment depth of machine foundation in Clayey silty sand. The work has been carried out by performing tests both in the laboratory and in the field. In the laboratory, small-scale cyclic load tests were performed by placing circular and square plates at different embedment depths in Clayey silty sand (Df/B =0, 0.5, 1, 1.5) in CBR moulds in OMC and MDD conditions, and the loading was done through a self-straining load frame.

No. of Pages: 24 No. of Claims: 9